Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plants (Basel) ; 12(20)2023 Oct 12.
Article de Anglais | MEDLINE | ID: mdl-37896011

RÉSUMÉ

Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of origin (MZO) hypothesis, to explore mechanisms underlying latitudinal and elevational gradients of phylogenetic diversity in tree communities. The TNC hypothesis posits that most lineages originate in warmer, wetter, and less seasonal environments in the tropics and rarely colonize colder, drier, and more seasonal environments outside of the tropical lowlands, leading to higher phylogenetic diversity at lower latitudes and elevations. In contrast, the MZO hypothesis posits that lineages also originate in temperate environments and readily colonize similar environments in the tropical highlands, leading to lower phylogenetic diversity at lower latitudes and elevations. We tested these phylogenetic predictions using a combination of computer simulations and empirical analyses of tree communities in 245 forest plots located in six countries across the tropical and subtropical Andes. We estimated the phylogenetic diversity for each plot and regressed it against elevation and latitude. Our simulated and empirical results provide strong support for the MZO hypothesis. Phylogenetic diversity among co-occurring tree species increased with both latitude and elevation, suggesting an important influence on the historical dispersal of lineages with temperate origins into the tropical highlands. The mixing of different floras was likely favored by the formation of climatically suitable corridors for plant migration due to the Andean uplift. Accounting for the evolutionary history of plant communities helps to advance our knowledge of the drivers of tree community assembly along complex climatic gradients, and thus their likely responses to modern anthropogenic climate change.

2.
Sci Data ; 9(1): 511, 2022 08 20.
Article de Anglais | MEDLINE | ID: mdl-35987763

RÉSUMÉ

We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY's next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot.


Sujet(s)
Biodiversité , Plantes , Phénotype , Feuilles de plante , Bois
4.
Nat Commun ; 12(1): 2138, 2021 04 09.
Article de Anglais | MEDLINE | ID: mdl-33837222

RÉSUMÉ

It is largely unknown how South America's Andean forests affect the global carbon cycle, and thus regulate climate change. Here, we measure aboveground carbon dynamics over the past two decades in 119 monitoring plots spanning a range of >3000 m elevation across the subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for aboveground carbon (0.67 ± 0.08 Mg C ha-1 y-1) and have a high potential to serve as future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic and biotic factors, such as climate and size-dependent mortality of trees. The increasing aboveground carbon stocks offset the estimated C emissions due to deforestation between 2003 and 2014, resulting in a net total uptake of 0.027 Pg C y-1. Reducing deforestation will increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow for recovery of biomass losses due to climate change.


Sujet(s)
Séquestration du carbone/physiologie , Carbone/métabolisme , Changement climatique , Conservation des ressources naturelles , Arbres/métabolisme , Biomasse , Forêts , Amérique du Sud , Climat tropical
5.
PLoS One ; 15(4): e0231553, 2020.
Article de Anglais | MEDLINE | ID: mdl-32311701

RÉSUMÉ

Our knowledge about the structure and function of Andean forests at regional scales remains limited. Current initiatives to study forests over continental or global scales still have important geographical gaps, particularly in regions such as the tropical and subtropical Andes. In this study, we assessed patterns of structure and tree species diversity along ~ 4000 km of latitude and ~ 4000 m of elevation range in Andean forests. We used the Andean Forest Network (Red de Bosques Andinos, https://redbosques.condesan.org/) database which, at present, includes 491 forest plots (totaling 156.3 ha, ranging from 0.01 to 6 ha) representing a total of 86,964 identified tree stems ≥ 10 cm diameter at breast height belonging to 2341 identified species, 584 genera and 133 botanical families. Tree stem density and basal area increases with elevation while species richness decreases. Stem density and species richness both decrease with latitude. Subtropical forests have distinct tree species composition compared to those in the tropical region. In addition, floristic similarity of subtropical plots is between 13 to 16% while similarity between tropical forest plots is between 3% to 9%. Overall, plots ~ 0.5-ha or larger may be preferred for describing patterns at regional scales in order to avoid plot size effects. We highlight the need to promote collaboration and capacity building among researchers in the Andean region (i.e., South-South cooperation) in order to generate and synthesize information at regional scale.


Sujet(s)
Altitude , Biodiversité , Forêts , Arbres , Climat , Amérique du Sud
6.
PLoS One ; 10(5): e0126594, 2015.
Article de Anglais | MEDLINE | ID: mdl-25973977

RÉSUMÉ

General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.


Sujet(s)
Forêts , Biodiversité , Modèles linéaires , Analyse en composantes principales , Arbres/croissance et développement
7.
J Hered ; 103(5): 682-91, 2012.
Article de Anglais | MEDLINE | ID: mdl-22563123

RÉSUMÉ

Phylogeography in combination with ecological niche modeling (ENM) is a robust tool to analyze hypotheses on range shifts under changing climates particularly of taxa and areas with scant fossil records. We combined phylogeographic analysis and ENM techniques to study the effects of alternate cold and warm (i.e., glacial and interglacial) periods on the subtropical montane cold-tolerant conifer Podocarpus parlatorei from Yungas forests of the central Andes. Twenty-one populations, comprising 208 individuals, were analyzed by sequences of the trnL -trnF cpDNA region, and 78 sites were included in the ENM. Eight haplotypes were detected, most of which were widespread while 3 of them were exclusive of latitudinally marginal areas. Haplotype diversity was mostly even throughout the latitudinal range. Two distribution models based on 8 bioclimatic variables indicate a rather continuous distribution during cooling, while under warming remained within stable, yet increasingly fragmented, areas. Although no major range shifts are expected with warming, long-lasting persistence of cold-hardy taxa inhabiting subtropical mountains may include in situ and ex situ conservation actions particularly toward southern (colder) areas.


Sujet(s)
Changement climatique , ADN des chloroplastes/génétique , ADN mitochondrial/génétique , Tracheobionta/génétique , Arbres/génétique , Fragmentation de l'ADN , Évolution moléculaire , Haplotypes , Phylogenèse , Phylogéographie , Polymorphisme génétique , Analyse de séquence d'ADN/méthodes , Tracheobionta/classification
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE