Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pharmaceutics ; 15(5)2023 May 20.
Article de Anglais | MEDLINE | ID: mdl-37242792

RÉSUMÉ

Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20-100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells.

2.
Molecules ; 26(4)2021 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-33672706

RÉSUMÉ

Exosomes are intrinsic cell-derived membrane vesicles in the size range of 40-100 nm, serving as great biomimetic nanocarriers for biomedical applications. These nanocarriers are known to bypass biological barriers, such as the blood-brain barrier, with great potential in treating brain diseases. Exosomes are also shown to be closely associated with cancer metastasis, making them great candidates for tumor targeting. However, the clinical translation of exosomes are facing certain critical challenges, such as reproducible production and in vivo tracking of their localization, distribution, and ultimate fate. Recently, inorganic nanoparticle-loaded exosomes have been shown great benefits in addressing these issues. In this review article, we will discuss the preparation methods of inorganic nanoparticle-loaded exosomes, and their applications in bioimaging and therapy. In addition, we will briefly discuss their potentials in exosome purification.


Sujet(s)
Matériaux biomimétiques/composition chimique , Exosomes/composition chimique , Nanoparticules/composition chimique , Tumeurs , Humains , Tumeurs/imagerie diagnostique , Tumeurs/traitement médicamenteux
4.
ACS Appl Bio Mater ; 4(8): 6244-6255, 2021 08 16.
Article de Anglais | MEDLINE | ID: mdl-35006910

RÉSUMÉ

Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.


Sujet(s)
Centella , Évaluation préclinique de médicament , Phénomènes magnétiques , Extraits de plantes , Récepteurs à activité tyrosine kinase
5.
J Magn Magn Mater ; 5152020 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-37779892

RÉSUMÉ

Iron oxide superparticles referring to a cluster of smaller nanoparticles have recently attracted much attention because of their enhanced magnetic moments but maintaining superparamagnetic behavior. In this study, iron oxide superparticles have been synthesized using a solvothermal method in the presence of six different polymers (e.g., sodium polyacrylate, pectin sodium alginate, chitosan oligosaccharides, polyethylene glycol, and polyvinylpyrrolidine). The functional group variation in these polymers affected their interactions with precursor iron ions, and subsequently influenced crystalline grain sizes within superparticles and their magnetic properties. These superparticles were extensively characterized by transmission electron microscopy, dynamic light scattering, x-ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...