Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 36
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Commun Biol ; 7(1): 735, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890525

RÉSUMÉ

Utilizing a microfluidic chip with serpentine channels, we inoculated the chip with an agar plug with Neurospora crassa mycelium and successfully captured individual hyphae in channels. For the first time, we report the presence of an autonomous clock in hyphae. Fluorescence of a mCherry reporter gene driven by a clock-controlled gene-2 promoter (ccg-2p) was measured simultaneously along hyphae every half an hour for at least 6 days. We entrained single hyphae to light over a wide range of day lengths, including 6,12, 24, and 36 h days. Hyphae tracked in individual serpentine channels were highly synchronized (K = 0.60-0.78). Furthermore, hyphae also displayed temperature compensation properties, where the oscillation period was stable over a physiological range of temperatures from 24 °C to 30 °C (Q10 = 1.00-1.10). A Clock Tube Model developed could mimic hyphal growth observed in the serpentine chip and provides a mechanism for the stable banding patterns seen in race tubes at the macroscopic scale and synchronization through molecules riding the growth wave in the device.


Sujet(s)
Hyphae , Neurospora crassa , Neurospora crassa/génétique , Neurospora crassa/physiologie , Neurospora crassa/croissance et développement , Hyphae/croissance et développement , Hyphae/génétique , Température , Laboratoires sur puces , Régulation de l'expression des gènes fongiques , Horloges biologiques/génétique
2.
ACS Nano ; 18(12): 8683-8693, 2024 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-38465942

RÉSUMÉ

Distinctive subpopulations of circulating tumor cells (CTCs) with increased motility are considered to possess enhanced tumor-initiating potential and contribute to metastasis. Single-cell analysis of the migratory CTCs may increase our understanding of the metastatic process, yet most studies are limited by technical challenges associated with the isolation and characterization of these cells due to their extreme scarcity and heterogeneity. We report a microfluidic method based on CTCs' chemotactic motility, termed as CTC-Race assay, that can analyze migrating CTCs from metastatic non-small-cell lung cancer (NSCLC) patients with advanced tumor stages and enable concurrent biophysical and biochemical characterization of them with single-cell resolution. Analyses of motile CTCs in the CTC-Race assay, in synergy with other single cell characterization techniques, could provide insights into cancer metastasis.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Cellules tumorales circulantes , Humains , Tumeurs du poumon/anatomopathologie , Cellules tumorales circulantes/anatomopathologie , Carcinome pulmonaire non à petites cellules/anatomopathologie , Marqueurs biologiques tumoraux
3.
ACS Nano ; 18(10): 7618-7632, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38422984

RÉSUMÉ

Calcium nanoparticles have been investigated for applications, such as drug and gene delivery. Additionally, Ca2+ serves as a crucial second messenger in the activation of immune cells. However, few studies have systematically studied the effects of calcium nanoparticles on the calcium levels and functions within immune cells. In this study, we explore the potential of calcium nanoparticles as a vehicle to deliver calcium into the cytosol of dendritic cells (DCs) and influence their functions. We synthesized calcium hydroxide nanoparticles, coated them with a layer of silica to prevent rapid degradation, and further conjugated them with anti-CD205 antibodies to achieve targeted delivery to DCs. Our results indicate that these nanoparticles can efficiently enter DCs and release calcium ions in a controlled manner. This elevation in cytosolic calcium activates both the NFAT and NF-κB pathways, in turn promoting the expression of costimulatory molecules, antigen-presenting molecules, and pro-inflammatory cytokines. In mouse tumor models, the calcium nanoparticles enhanced the antitumor immune response and augmented the efficacy of both radiotherapy and chemotherapy without introducing additional toxicity. Our study introduces a safe nanoparticle immunomodulator with potential widespread applications in cancer therapy.


Sujet(s)
Calcium , Nanoparticules , Animaux , Souris , Calcium/métabolisme , Cytosol/métabolisme , Cytokines/métabolisme , Cellules dendritiques , Immunothérapie/méthodes
4.
ACS Nano ; 17(1): 94-110, 2023 01 10.
Article de Anglais | MEDLINE | ID: mdl-36541668

RÉSUMÉ

Simultaneous cell profiling and isolation based on cellular antigen-binding capacity plays an important role in understanding and treating diseases. However, fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) are not able to meet this need, due to their requirement for a large quantity of target cells and the limitation stemming from bimodal separation. Here we report a microfluidic method, termed quantitative ferrohydrodynamic cell separation (qFCS), that achieved multimodal rare cell sorting and simultaneous antigen profiling at a ∼30,000 cell min-1 throughput with a 96.49% recovery rate and a 98.72% purity of recovered cells. qFCS profiles and sorts cells via cellular magnetic content of the magnetically labeled cells, which correlates to cellular antigen-binding capacity. By integrating cellular magnetophoresis and diamagnetophoresis in biocompatible ferrofluids, we demonstrate that the resulting qFCS device can accurately profile and isolate rare cells even when present at ∼1:50,000 target to background cells frequency. We show that the qFCS device could accurately profile and isolate T lymphocytes based on a low-expression CD154 antigen and allow on-device analysis of cells after processing. This method could address the need for simultaneous and multimodal rare cell isolation and profiling in disease diagnostics, prognostics, and treatment.


Sujet(s)
Microfluidique , Séparation cellulaire/méthodes , Cytométrie en flux/méthodes
5.
Sci Rep ; 12(1): 6750, 2022 04 25.
Article de Anglais | MEDLINE | ID: mdl-35468928

RÉSUMÉ

We determined the macroscopic limit for phase synchronization of cellular clocks in an artificial tissue created by a "big chamber" microfluidic device to be about 150,000 cells or less. The dimensions of the microfluidic chamber allowed us to calculate an upper limit on the radius of a hypothesized quorum sensing signal molecule of 13.05 nm using a diffusion approximation for signal travel within the device. The use of a second microwell microfluidic device allowed the refinement of the macroscopic limit to a cell density of 2166 cells per fixed area of the device for phase synchronization. The measurement of averages over single cell trajectories in the microwell device supported a deterministic quorum sensing model identified by ensemble methods for clock phase synchronization. A strong inference framework was used to test the communication mechanism in phase synchronization of quorum sensing versus cell-to-cell contact, suggesting support for quorum sensing. Further evidence came from showing phase synchronization was density-dependent.


Sujet(s)
Neurospora crassa , Diffusion , Laboratoires sur puces , Détection du quorum
6.
Sci Rep ; 12(1): 1703, 2022 02 01.
Article de Anglais | MEDLINE | ID: mdl-35105905

RÉSUMÉ

Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.

7.
Lab Chip ; 21(18): 3583-3597, 2021 09 14.
Article de Anglais | MEDLINE | ID: mdl-34346469

RÉSUMÉ

Profiling circulating tumour cells (CTCs) in cancer patients' blood samples is critical to understand the complex and dynamic nature of metastasis. This task is challenged by the fact that CTCs are not only extremely rare in circulation but also highly heterogeneous in their molecular programs and cellular functions. Here we report a combinational approach for the simultaneous biochemical and functional phenotyping of patient-derived CTCs, using an integrated inertial ferrohydrodynamic cell separation (i2FCS) method and a single-cell microfluidic migration assay. This combinatorial approach offers unique capability to profile CTCs on the basis of their surface expression and migratory characteristics. We achieve this using the i2FCS method that successfully processes whole blood samples in a tumor cell marker and size agnostic manner. The i2FCS method enables an ultrahigh blood sample processing throughput of up to 2 × 105 cells s-1 with a blood sample flow rate of 60 mL h-1. Its short processing time (10 minutes for a 10 mL sample), together with a close-to-complete CTC recovery (99.70% recovery rate) and a low WBC contamination (4.07-log depletion rate by removing 99.992% of leukocytes), results in adequate and functional CTCs for subsequent studies in the single-cell migration device. For the first time, we employ this new approach to query CTCs with single-cell resolution in accordance with their expression of phenotypic surface markers and migration properties, revealing the dynamic phenotypes and the existence of a high-motility subpopulation of CTCs in blood samples from metastatic lung cancer patients. This method could be adopted to study the biological and clinical value of invasive CTC phenotypes.


Sujet(s)
Techniques d'analyse microfluidique , Cellules tumorales circulantes , Numération cellulaire , Lignée cellulaire tumorale , Séparation cellulaire , Humains , Laboratoires sur puces
8.
Lab Chip ; 21(14): 2738-2750, 2021 07 13.
Article de Anglais | MEDLINE | ID: mdl-34018527

RÉSUMÉ

Rapid and label-free separation of target cells from biological samples provided unique opportunity for disease diagnostics and treatment. However, even with advanced technologies for cell separation, the limited throughput, high cost and low separation resolution still prevented their utility in separating cells with well-defined physical features from a large volume of biological samples. Here we described an ultrahigh-throughput microfluidic technology, termed as inertial-ferrohydrodynamic cell separation (inertial-FCS), that rapidly sorted through over 60 milliliters of samples at a throughput of 100 000 cells per second in a label-free manner, differentiating the cells based on their physical diameter difference with ∼1-2 µm separation resolution. Through the integration of inertial focusing and ferrohydrodynamic separation, we demonstrated that the resulting inertial-FCS devices could separate viable and expandable circulating tumor cells from cancer patients' blood with a high recovery rate and high purity. We also showed that the devices could enrich lymphocytes directly from white blood cells based on their physical morphology without any labeling steps. This label-free method could address the needs of high throughput and high resolution cell separation in circulating tumor cell research and adoptive cell transfer immunotherapy.


Sujet(s)
Techniques d'analyse microfluidique , Cellules tumorales circulantes , Séparation cellulaire , Numération des érythrocytes , Humains , Leucocytes , Microfluidique
9.
Lab Chip ; 21(9): 1706-1723, 2021 05 04.
Article de Anglais | MEDLINE | ID: mdl-33720269

RÉSUMÉ

Methods to separate circulating tumor cells (CTCs) from blood samples were intensively researched in order to understand the metastatic process and develop corresponding clinical assays. However current methods faced challenges that stemmed from CTCs' heterogeneity in their biological markers and physical morphologies. To this end, we developed integrated ferrohydrodynamic cell separation (iFCS), a scheme that separated CTCs independent of their surface antigen expression and physical characteristics. iFCS integrated both diamagnetophoresis of CTCs and magnetophoresis of blood cells together via a magnetic liquid medium, ferrofluid, whose magnetization could be tuned by adjusting its magnetic volume concentration. In this paper, we presented the fundamental theory of iFCS and its specific application in CTC separation. Governing equations of iFCS were developed to guide its optimization process. Three critical parameters that affected iFCS's cell separation performance were determined and validated theoretically and experimentally. These parameters included the sample flow rate, the volumetric concentration of magnetic materials in the ferrofluid, and the gradient of the magnetic flux density. We determined these optimized parameters in an iFCS device that led to a high recovery CTC separation in both spiked and clinical samples.


Sujet(s)
Cellules tumorales circulantes , Numération cellulaire , Lignée cellulaire tumorale , Séparation cellulaire , Humains
10.
ACS Biomater Sci Eng ; 7(1): 350-359, 2021 01 11.
Article de Anglais | MEDLINE | ID: mdl-33320530

RÉSUMÉ

Animal models are frequently used in drug discovery because they represent a mammalian in vivo model system, they are the closest approximation to the human brain, and experimentation in humans is not ethical. Working with postmortem human brain samples is challenging and developing human in vitro systems, which mimic the in vivo human brain, has been challenging. However, the use of animal models in drug discovery for human neurological diseases is currently under scrutiny because data from animal models has come with variations due to genetic differences. Evidence from the literature suggests that techniques to reconstruct multiple neurotransmission projections, which characterize neurological disease circuits in humans, in vitro, have not been demonstrated. This paper presents a multicompartment microdevice for patterning neurospheres and specification of neural stem cell fate toward networks of multiple neuronal phenotypes. We validated our design by specification of human neural stem cells to dopaminergic and GABAergic neurons in different compartments of the device, simultaneously. The neurospheres formed unrestricted robust neuronal circuits between arrays of neurospheres in all compartments of the device. Such a device design may provide a basis for formation of multineurotransmission circuits to model functional connectivity between specific human brain regions, in vitro, using human-derived neural stem cells. This work finds relevance in neurological disease modeling and drug screening using human cell-based assays and may provide the impetus for shifting from animal-based models.


Sujet(s)
Laboratoires sur puces , Cellules souches neurales , Animaux , Encéphale , Dopamine , Humains , Neurones
11.
Microorganisms ; 8(11)2020 Nov 09.
Article de Anglais | MEDLINE | ID: mdl-33182369

RÉSUMÉ

The vegetative life cycle in the model filamentous fungus, Neurospora crassa, relies on the development of conidiophores to produce new spores. Environmental, temporal, and genetic components of conidiophore development have been well characterized; however, little is known about their morphological variation. We explored conidiophore architectural variation in a natural population using a wild population collection of 21 strains from Louisiana, United States of America (USA). Our work reveals three novel architectural phenotypes, Wild Type, Bulky, and Wrap, and shows their maintenance throughout the duration of conidiophore development. Furthermore, we present a novel image-classifier using a convolutional neural network specifically developed to assign conidiophore architectural phenotypes in a high-throughput manner. To estimate an inheritance model for this discrete complex trait, crosses between strains of each phenotype were conducted, and conidiophores of subsequent progeny were characterized using the trained classifier. Our model suggests that conidiophore architecture is controlled by at least two genes and has a heritability of 0.23. Additionally, we quantified the number of conidia produced by each conidiophore type and their dispersion distance, suggesting that conidiophore architectural phenotype may impact N. crassa colonization capacity.

12.
Lab Chip ; 20(17): 3187-3201, 2020 08 26.
Article de Anglais | MEDLINE | ID: mdl-32844860

RÉSUMÉ

Isolation of exosomes from biological samples provides a minimally-invasive alternative for basic understanding, diagnosis, and prognosis of metastatic cancers. The biology and clinical values of exosomes are under intensive investigation, yet most studies are limited by technical challenges in recovering these exosomes with heterogeneous sizes and cargos from biological samples. We report a novel method based on "particle ferrohydrodynamics" and its associated microfluidic device, termed as the FerroChip, which can separate exosome-like nanoparticles from microliters of cell culture media and human serum in a label-free, continuous-flow and size-dependent manner, and achieves a high recovery rate (94.3%) and a high purity (87.9%). Separated exosome-like nanoparticles had diameters, morphology, and protein expressions that were consistent with other reports. This method, upon further molecular characterization, could potentially facilitate basic understanding of exosomes and its clinical application in blood liquid biopsy.


Sujet(s)
Exosomes , Nanoparticules , Tumeurs , Humains , Laboratoires sur puces , Biopsie liquide
13.
FASEB J ; 33(11): 11973-11992, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31398290

RÉSUMÉ

Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.


Sujet(s)
Mouvement cellulaire/effets des médicaments et des substances chimiques , Chondroïtines sulfate/antagonistes et inhibiteurs , Glioblastome/métabolisme , Cellules souches tumorales/effets des médicaments et des substances chimiques , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Urée/analogues et dérivés , Antigène AC133/métabolisme , Animaux , Lignée cellulaire tumorale , Chondroïtines sulfate/métabolisme , Glioblastome/anatomopathologie , Gliome/métabolisme , Gliome/anatomopathologie , Glycosaminoglycanes/antagonistes et inhibiteurs , Glycosaminoglycanes/métabolisme , Humains , Invasion tumorale , Cellules souches tumorales/métabolisme , Rats , Transduction du signal/effets des médicaments et des substances chimiques , Urée/pharmacologie
14.
Yale J Biol Med ; 92(2): 169-178, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-31249477

RÉSUMÉ

Four inter-related measures of phase are described to study the phase synchronization of cellular oscillators, and computation of these measures is described and illustrated on single cell fluorescence data from the model filamentous fungus, Neurospora crassa. One of these four measures is the phase shift ϕ in a sinusoid of the form x(t) = A(cos(ωt + ϕ), where t is time. The other measures arise by creating a replica of the periodic process x(t) called the Hilbert transform x̃(t), which is 90 degrees out of phase with the original process x(t). The second phase measure is the phase angle FH(t) between the replica x̃(t) and x(t), taking values between -π and π. At extreme values the Hilbert Phase is discontinuous, and a continuous form FC(t) of the Hilbert Phase is used, measuring time on the nonnegative real axis (t). The continuous Hilbert Phase FC(t) is used to define the phase MC(t1,t0) for an experiment beginning at time t0 and ending at time t1. In that phase differences at time t0 are often of ancillary interest, the Hilbert Phase FC(t0) is subtracted from FC(t1). This difference is divided by 2π to obtain the phase MC(t1,t0) in cycles. Both the Hilbert Phase FC(t) and the phase MC(t1,t0) are functions of time and useful in studying when oscillators phase-synchronize in time in signal processing and circadian rhythms in particular. The phase of cellular clocks is fundamentally different from circadian clocks at the macroscopic scale because there is an hourly cycle superimposed on the circadian cycle.


Sujet(s)
Horloges biologiques/physiologie , Horloges circadiennes/physiologie , Rythme circadien/physiologie , Neurospora crassa/physiologie , Analyse sur cellule unique/méthodes , Algorithmes , Horloges biologiques/génétique , Protéines fongiques/génétique , Régulation de l'expression des gènes fongiques , Mesures de luminescence/méthodes , Modèles biologiques , Neurospora crassa/cytologie , Neurospora crassa/métabolisme , Processus stochastiques , Facteurs temps
15.
Lab Chip ; 19(10): 1860-1876, 2019 05 14.
Article de Anglais | MEDLINE | ID: mdl-31041975

RÉSUMÉ

Isolation of circulating tumor cells (CTCs) from blood provides a minimally-invasive alternative for basic understanding, diagnosis, and prognosis of metastatic cancer. The roles and clinical values of CTCs are under intensive investigation, yet most studies are limited by technical challenges in the comprehensive enrichment of intact and viable CTCs with minimal white blood cell (WBC) contamination. Here, we report a novel method based on contrast of cell magnetization in biocompatible ferrofluids (a colloidal magnetic nanoparticle suspension), termed as integrated ferrohydrodynamic cell separation (iFCS), that enriches CTCs in a tumor antigen-independent and cell size variation-inclusive manner, achieves a high throughput (12 mL h-1), high recovery rate (99.08% at down to ∼10 cells per mL spike ratio), and low WBC contamination (533 cells for every one milliliter blood processed) and is biocompatible. This method will enable large cohort research to define the clinical and diagnostic value of CTC subtypes.


Sujet(s)
Antigènes néoplasiques/immunologie , Tumeurs/diagnostic , Cellules tumorales circulantes/immunologie , Taille de la cellule , Humains , Leucocytes/anatomopathologie , Nanoparticules de magnétite/composition chimique , Techniques d'analyse microfluidique , Tumeurs/sang , Tumeurs/immunologie , Cellules tumorales circulantes/anatomopathologie , Cellules cancéreuses en culture
16.
Adv Biosyst ; 3(1): e1800246, 2019 Jan.
Article de Anglais | MEDLINE | ID: mdl-32627350

RÉSUMÉ

A unique noncontact single cell manipulation technique based on the actuation of magnetic nanorods (MNRs) or clusters (MCs) by nonuniform alternating magnetic fields (nuAMFs) is demonstrated. Compared to the actuation of MNRs/MCs by conventional magnetophoresis, the motion of MNRs/MCs actuated by nuAMFs can be tuned by additional parameters including the shape of MNRs/MCs and the frequency of the applied magnetic fields. The manipulation of a single cell by an actuated MNR/MC are divided into five stages, i.e., approaching, pushing, carrying, dragging, and releasing. The interactions between the MNR/MC and the cell in these stages are investigated in detail both experimentally and numerically. Other applications of cell manipulation, such as concentrating cells at target locations and accumulating MNRs/MCs onto a single cell, are also demonstrated. The single cell manipulation system is simple, low-cost, and low-power consumption, and helps advance the state-of-the-art of single-particle manipulation.

17.
J Phys Condens Matter ; 30(31): 315101, 2018 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-29947616

RÉSUMÉ

It is well-known that ferromagnetic microrods form linear chains under an external uniform magnetic field B and the chain length is strongly dependent on the applied field, the applied time duration, and the microrod density. When the chains become long enough and the B-field switches to its orthogonal direction, an irreversible morphological transition, i.e. a parallel linear chain array to a 2D network, is observed. The formation of the network depends on the ratio of the average chain length L and separation D, L/D, as well as the magnitude of the changed B-field. When the chain pattern has an L/D larger than a critical value, the network structure will be formed. Such a critical L/D ratio is a monotonic function of B, which determines the bending length of each magnetic chain during the change of B-fields. This morphological change triggered by external magnetic field can be used as scaffolds or building blocks for biological applications or design smart materials.

18.
Adv Biosyst ; 2(5)2018 May.
Article de Anglais | MEDLINE | ID: mdl-29780878

RÉSUMÉ

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.

19.
Proc Inst Mech Eng H ; 232(6): 597-604, 2018 Jun.
Article de Anglais | MEDLINE | ID: mdl-29687748

RÉSUMÉ

Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.


Sujet(s)
Artéfacts , Phénomènes magnétiques , Imagerie par résonance magnétique , Gadolinium , Humains , Traitement d'image par ordinateur , Fantômes en imagerie , Rapport signal-bruit
20.
Langmuir ; 33(45): 13000-13007, 2017 11 14.
Article de Anglais | MEDLINE | ID: mdl-29043824

RÉSUMÉ

Droplet interface bilayer (DIB) networks allow for the construction of stimuli-responsive, membrane-based materials. Traditionally used for studying cellular transport phenomena, the DIB technique has proven its practicality when creating structured droplet networks. These structures consist of aqueous compartments capable of exchanging their contents across membranous barriers in a regulated fashion via embedded biomolecules, thus approximating the activity of natural cellular systems. However, lipid bilayer networks are often static and incapable of any reconfiguration in their architecture. In this study, we investigate the incorporation of a magnetic fluid or ferrofluid within the droplet phases for the creation of magnetically responsive DIB arrays. The impact of adding ferrofluid to the aqueous phases of the DIB networks is assessed by examining the bilayers' interfacial tensions, thickness, and channel activity. Once compatibility is established, potential applications of the ferrofluid-enabled DIBs are showcased by remotely modifying membrane qualities through magnetic fields. Ferrofluids do not significantly alter the bilayers' properties or functionality and can therefore be safely embedded within the DIB platform, allowing for remote manipulation of the interfacial bilayer properties.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE