Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 257
Filtrer
1.
J Anim Sci Biotechnol ; 15(1): 127, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39261875

RÉSUMÉ

BACKGROUND: Addressing the shortage of high-quality protein resources, this study was conducted to investigate the effects of replacing soybean meal (SBM) with different levels of enzymolysis-fermentation compound protein feed (EFCP) in the diets of growing-finishing pigs, focusing on growth performance, nutrients digestibility, carcass traits, and meat quality. METHODS: Sixty DLY (Duroc × Landrace × Yorkshire) pigs with an initial body weight of 42.76 ± 2.05 kg were assigned to 5 dietary treatments in a 2 × 2 + 1 factorial design. These dietary treatments included a corn-soybean meal diet (CON), untreated compound protein feed (UCP) substitution 50% (U50) and 100% SBM (U100) diets, and EFCP substitution 50% (EF50) and 100% SBM (EF100) diets. Each treatment had 6 pens (replicates) with 2 pigs per pen, and the experiment lasted 58 d, divided into phase I (1-28 d) and phase II (29-58 d). Following phase I, only the CON, U50, and EF50 groups were continued for phase II, each with 5 replicate pens. On d 59, a total of 15 pigs (1 pig/pen, 5 pens/treatment) were euthanized. RESULTS: During phase I, the EF50 group had a higher average daily gain (ADG) in pigs (P < 0.05) compared to the CON group, whereas the U50 group did not have a significant difference. As the substitution ratio of UCP and EFCP increased in phase I, there was a noticeable reduction in the final body weight and ADG (P < 0.05), along with an increase in the feed-to-gain ratio (F/G) (P < 0.05). In phase II, there were no significant differences in growth performance among the treatment groups, but EF50 increased the apparent digestibility of several nutrients (including dry matter, crude protein, crude fiber, acid detergent fiber, ash, gross energy) compared to U50. The EF50 group also exhibited significantly higher serum levels of neuropeptide Y and ghrelin compared to the CON and U50 groups (P < 0.05). Moreover, the EF50 group had higher carcass weight and carcass length than those in the CON and U50 groups (P < 0.05), with no significant difference in meat quality. CONCLUSIONS: The study findings suggest that replacing 50% SBM with EFCP during the growing-finishing period can improve the growth performance, nutrient digestibility, and carcass traits of pigs without compromising meat quality. This research offers valuable insights into the modification of unconventional plant protein meals and developing alternatives to SBM.

2.
J Agric Food Chem ; 72(36): 20091-20100, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39189965

RÉSUMÉ

As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.


Sujet(s)
Aliment pour animaux , Coffea , Café , Polyphénols , Acide quinique , Animaux , Acide quinique/analogues et dérivés , Acide quinique/analyse , Polyphénols/administration et posologie , Polyphénols/composition chimique , Suidae/métabolisme , Aliment pour animaux/analyse , Coffea/composition chimique , Café/composition chimique , Compléments alimentaires/analyse , Mâle , Femelle , Poids/effets des médicaments et des substances chimiques
3.
J Anim Sci Biotechnol ; 15(1): 111, 2024 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-39127747

RÉSUMÉ

BACKGROUND: Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs. RESULTS: We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity. CONCLUSIONS: These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.

4.
Front Microbiol ; 15: 1442946, 2024.
Article de Anglais | MEDLINE | ID: mdl-39135878

RÉSUMÉ

It is increasingly recognized that microplastics (MPs) are being transmitted through the food chain system, but little is known about the microorganisms involved in MP degradation, functional biodegradation genes, and metabolic pathways of degradation in the intestinal tract of foodborne animals. In this study, we explored the potential flora mainly involved in MP degradation in the intestinal tracts of Taoyuan, Duroc, and Xiangcun pigs by macrogenomics, screened relevant MP degradation genes, and identified key enzymes and their mechanisms. The pig colon was enriched with abundant MP degradation-related genes, and gut microorganisms were their main hosts. The fiber diet did not significantly affect the abundance of MP degradation-related genes but significantly reduced their diversity. We identified a total of 94 functional genes for MP degradation and classified them into 27 categories by substrate type, with polystyrene (PS), polyethylene terephthalate (PET), and di(2-ethylhexyl) phthalate (DEHP) were the most predominant degradation types. The MP degradation functional genes were widely distributed in a variety of bacteria, mainly in the phylum Firmicutes and Bacteroidetes. Based on the identified functional genes for MP degradation, we proposed a hypothetical degradation mechanism for the three major MP pollutants, namely, PS, PET, and DEHP, which mainly consist of oxidoreductase, hydrolase, transferase, ligase, laccase, and isomerase. The degradation process involves the breakdown of long polymer chains, the oxidation of short-chain oligomers, the conversion of catechols, and the achievement of complete mineralization. Our findings provide insights into the function of MP degradation genes and their host microorganisms in the porcine colon.

5.
Int Immunopharmacol ; 140: 112806, 2024 Oct 25.
Article de Anglais | MEDLINE | ID: mdl-39098232

RÉSUMÉ

Dihydromyricetin (DMY), a natural flavonoid compound, are believed to prevent inflammatory response, dealing with pathogens and repairing the intestinal barrier. The objective of this study was to investigate whether DMY supplementation could attenuate intestinal damage in the context of enterotoxigenic Escherichia coli K88 (ETEC F4+) infection. After weaning, different litters of pigs were randomly assigned to one of the following treatments: (1) non-challenged control (CON, fed with basal diet); (2) ETEC-challenged control (ECON, fed with basal diet); and (3) ETEC challenge + DMY treatment (EDMY, fed with basal diet plus 300 mg kg-1 DMY). We observed a significant reduction in fecal Escherichia coli shedding and diarrhea incidence, but an increase in ADG in pigs of EDMY group compared to the pigs of ECON group. Relative to the pigs of ECON group, dietary DMY treatment decreased (P < 0.05) concentrations of the serum D-xylose, D-lactate and diamine oxidase (DAO), but increased the abundance of zonula occludens-1 (ZO-1) in the jejunum of pigs. In addition, DMY also decreased (P < 0.05) the number of S-phase cells and the percentage of total apoptotic epithelial cells of jejunal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Furthermore, DMY decreased the mRNA expression levels of critical immune-associated genes TLR4, NFκB, Caspase3, Caspase9, IL-1ß, IL-6, TNF-α and the protein p-NFκB and p-IκBα expressions of intestinal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Compared to the ECON group, DMY elevated (P < 0.05) the expression levels of ß-defensins PBD1, PBD2, PBD3, PBD129, as well as the abundance of secreted IgA in intestinal mucosae of the EDMY group. Thus, our results indicate that DMY may relieve intestinal integrity damage due to Escherichia coli F4.


Sujet(s)
Escherichia coli entérotoxigène , Infections à Escherichia coli , Flavonols , Muqueuse intestinale , Maladies des porcs , Animaux , Escherichia coli entérotoxigène/effets des médicaments et des substances chimiques , Suidae , Muqueuse intestinale/effets des médicaments et des substances chimiques , Muqueuse intestinale/anatomopathologie , Muqueuse intestinale/métabolisme , Muqueuse intestinale/microbiologie , Muqueuse intestinale/immunologie , Flavonols/pharmacologie , Flavonols/usage thérapeutique , Infections à Escherichia coli/traitement médicamenteux , Infections à Escherichia coli/médecine vétérinaire , Infections à Escherichia coli/immunologie , Maladies des porcs/traitement médicamenteux , Maladies des porcs/microbiologie , Maladies des porcs/immunologie , Sevrage , Cytokines/métabolisme , Diarrhée/traitement médicamenteux , Diarrhée/médecine vétérinaire , Apoptose/effets des médicaments et des substances chimiques , Protéine-1 de la zonula occludens/métabolisme , Protéine-1 de la zonula occludens/génétique
6.
Front Vet Sci ; 11: 1421871, 2024.
Article de Anglais | MEDLINE | ID: mdl-39193366

RÉSUMÉ

Enteric infection is a major cause of enteric disorder in neonatal pigs during the weaning transition. Dihydromyricetin (DMY) is a natural flavanonol compound extracted from Ampelopsis grossedentata with numerous biological activities such as antioxidative and immunomodulatory functions. The objective of this study was to investigate the effects of dietary dihydromyricetin supplementation on growth performance, immunity, and intestinal functions in weaned pigs challenged by enterotoxigenic Escherichia coli (ETEC). In total, 24 weaned DLY (Duroc × Landrace × Yorkshire) pigs were allotted to 3 treatments. Pigs fed with basal diet or basal diet containing 300 mg/kg DMY were orally infused with sterilized culture or ETEC (2.5 × 1011 colony-forming units). Dietary DMY supplementation significantly elevated the final weight and average daily gain (ADG) but reduced diarrhea incidence in the weaned pigs of the EDMY group compared to the pigs of the ECON group (p < 0.05). Compared to the ECON group, DMY also improved the digestibility of dry matter (DM), ether extract (EE), gross energy (GE), and ash of the EDMY group (p < 0.05). Moreover, DMY not only significantly decreased the ratio of albumin/globulin but also elevated serum concentrations of immunoglobulins (e.g., IgA and IgG) in the weaned pigs of the EDMY group compared to the pigs of the ECON group (p < 0.05). Interestingly, the villus height, the ratio of villus height to crypt depth (V:C), and the activities of mucosal alkaline phosphatase, sucrase, and maltase in the duodenum and jejunum of the EDMY group were higher than those in the ECON group (p < 0.05). Importantly, DMY significantly elevated the expression levels of jejunal zonula occludens-1 (ZO-1), claudin-1, cationic amino acid transporter-1 (CAT-1), and fatty acid transport protein-1 (FATP-1) in the weaned pigs of the EDMY group compared to the pigs of the ECON group (p < 0.05). Additionally, compared to the ECON group, DMY increased the concentrations of microbial SCFA metabolites (e.g., acetic acid and propanoic acid), but reduced the abundance of Escherichia coli in the cecum of the EDMY group (p < 0.05). Dietary DMY supplementation can attenuate the ETEC-induced growth retardation and intestinal injury, which was attributed to the amelioration of intestinal nutrient digestion and transport functions as well as the improved microbiota.

7.
Animals (Basel) ; 14(16)2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39199939

RÉSUMÉ

The study was designed to investigate the protective effect of dietary supplementation with coated benzoic acid (CBA) on intestinal barrier function in weaned pigs challenged with enterotoxigenic Escherichia coli (ETEC). Thirty-two pigs were randomized to four treatments and given either a basal diet or a basal diet supplemented with 3.0 g/kg CBA, followed by oral administration of ETEC or culture medium. The results showed that CBA supplementation increased the average daily weight gain (ADWG) in the ETEC-challenged pigs (p < 0.05). CBA also increased the serum activity of total superoxide dismutase (T-SOD) and the total antioxidant capacity (T-AOC), as it decreased the serum concentrations of endotoxin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the ETEC-challenged pigs (p < 0.05). Interestingly, the CBA alleviated the ETEC-induced intestinal epithelial injury, as indicated by a reversal of the decrease in D-xylose absorption and a decrease in the serum levels of D-lactate and diamine oxidase (DAO) activity, as well as a decrease in the quantity of apoptotic cells in the jejunal epithelium following ETEC challenge (p < 0.05). Moreover, CBA supplementation significantly elevated the mucosal antioxidant capacity and increased the abundance of tight junction protein ZO-1 and the quantity of sIgA-positive cells in the jejunal epithelium (p < 0.05). Notably, CBA increased the expression levels of porcine beta defensin 2 (PBD2), PBD3, and nuclear factor erythroid-2 related factor 2 (Nrf-2), while downregulating the expression of toll-like receptor 4 (TLR4) in the jejunal mucosa (p < 0.05). Moreover, CBA decreased the expression levels of interleukin-1ß (IL-1ß), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) in the ileal mucosa upon ETEC challenge (p < 0.05). These results suggest that CBA may attenuate ETEC-induced damage to the intestinal epithelium, resulting in reduced inflammation, enhanced intestinal immunity and antioxidant capacity, and improved intestinal epithelial function.

8.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-39001695

RÉSUMÉ

To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n = 6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), d-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.


In last decades, antibiotics have been widely used as growth-promoting agents to relieve weaning stress and prevent intestinal injury. However, overdose and misuse of antibiotics led to bacterial resistance and drug residues in animal products. Therefore, the development of healthy alternatives for pork production has attracted considerable research interest worldwide. Cordyceps militaris (CM) is an entomopathogenic fungus with various biological effects, including anti-inflammatory, lipid-lowering, and antioxidant activities. This study was conducted to investigate the effects of dietary CM supplementation on growth performance, antioxidant capacity, and intestinal epithelium functions in weaned pigs. Our results showed that CM supplementation could enhance the growth performance by improving antioxidant capacity and intestinal epithelium functions.


Sujet(s)
Aliment pour animaux , Antioxydants , Cordyceps , Régime alimentaire , Muqueuse intestinale , Animaux , Cordyceps/composition chimique , Muqueuse intestinale/métabolisme , Muqueuse intestinale/effets des médicaments et des substances chimiques , Antioxydants/métabolisme , Suidae/croissance et développement , Régime alimentaire/médecine vétérinaire , Aliment pour animaux/analyse , Compléments alimentaires/analyse , Sevrage , Phénomènes physiologiques nutritionnels chez l'animal , Répartition aléatoire , Mâle
9.
Front Vet Sci ; 11: 1413920, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966563

RÉSUMÉ

A 42-days study was conducted to evaluate the effects of different dietary types (corn-or wheat-soybean meal-based diet) and phytase (Phy) or a multi-carbohydrase and phytase complex (MCPC) supplementation on growth performance, digestibility of phosphorus (P), intestinal transporter gene expression, plasma indexes, bone parameters, and fecal microbiota in growing pigs. Seventy-two barrows (average initial body weight of 24.70 ± 0.09 kg) with a 2 × 3 factorial arrangement of treatments and main effects of diet type (corn-or wheat-soybean meal-based-diets) and enzyme supplementation (without, with Phy or with MCPC). Each group was designed with 6 replicate pens. The MCPC increased (p < 0.05) average daily gain (ADG) and final body weight (BW). A significant interaction (p = 0.01) was observed between diet type and enzyme supplementation on apparent total tract digestibility (ATTD) of P. The ATTD of P was higher (p < 0.05) in wheat soybean meal-based diets compared to corn-soybean meal-based diets. Compared with the corn-soybean meal-based diet, the relative expression of SLC34A2 and VDR genes in the ileum and SLC34A3 in jejunum of growing pigs fed the wheat-soybean meal based diet was lower (p < 0.05). The MCPC significantly reduced (p < 0.05) the relative expression of TRPV5 and CALB1 genes in the ileum and increased the expression of CALB1 in the duodenum compared to control diet. The phytase increased (p < 0.05) the relative expression of SLC34A1 gene in the duodenum in comparison to control diet and MCPC-supplemented diet. The Ca and P contents in plasma from pigs fed corn-soybean meal-based diet were higher (p < 0.05) than those from pigs fed wheat-soybean meal-based diet, and the parathyroid hormone (PTH) and calcitonin (CT) concentrations were lower (p < 0.05) than those fed wheat-soybean meal-based diet. The content of Ca and P in the femur and the bone strength of pigs in the corn-soybean meal group were significantly higher (p < 0.05) than those in the wheat-soybean meal groups. The phytase increased (p < 0.05) the Ca and P content and bone strength of the femur. Additionally, diet type and both enzymes significantly improved fecal microbial diversity and composition. Taken together, diet type and exogenous enzymes supplementation could differently influence the growth performance, utilization of phosphorus, intestinal transporter gene expression, bone mineralization and microbial diversity and composition in growing pigs.

10.
Poult Sci ; 103(7): 103795, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38723460

RÉSUMÉ

Studies have reported that theabrownin can moderate the lipid metabolism and intestinal microbiota, thereby affecting the health of humans and model animals, however the research on laying hens is scarce. The present study aimed to investigate the effects of dietary theabrownin supplementation on lipid metabolism, microbial composition and ovarian function in laying hens. A total of 80 laying hens (25 wk of age) were fed with normal diet (CON) and normal diet +100 mg/kg theabrownin (PT group) for 12 wk. The results showed that the addition of theabrownin enhanced villus height of duodenum and decreased crypt depth of jejunum (P < 0.05). At the same time, compared with CON, the concentration of IL-6 and the mRNA expression of IL-1ß and IL-6 were decreased significantly in PT group (P < 0.05). Dietary theabrownin reduced the concentration of total cholesterol and glycerol, while decreased lipid droplet optical density in liver (P < 0.05). Compared with CON group, the mRNA expression of PPARγ, HMG-CoAS, ACC were down-regulated and the mRNA expression of CYP8B1 was up-regulated in PT group (P < 0.05). The ACE, Chao1 and Observed_species indexes in cecum microbiota were increased by PT group intervention (P < 0.05). Dietary PT supplementation enhanced the relative abundance of Firmicutes (phylum), Lactobacillus (genus) and the Firmicutes to Bacteroidetes ratio, and reduced the relative abundance of Bacteroidetes (phylum) in cecum (P < 0.05). The organic acids and its derivatives were up-regulated by theabrownin intervention in serum metabolites (P < 0.05). Dietary theabrownin supplementation resulted in higher mRNA expression of Bcl-2 and SIRT1 in ovary and increased the concentration of estradiol in serum (P < 0.05). These discovering indicated that dietary theabrownin supplementation enhanced the intestinal function and influenced serum metabolism by improving intestinal morphology, microbiota community structure and reducing the concentration and expression of inflammatory cytokines in intestine. Dietary theabrownin reduced hepatic lipid deposition and it also decreased the cell apoptosis rate to improve ovarian function and egg weight which were associated with the SIRT1 pathway.


Sujet(s)
Aliment pour animaux , Poulets , Régime alimentaire , Compléments alimentaires , Microbiome gastro-intestinal , Ovaire , Animaux , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Poulets/physiologie , Femelle , Ovaire/effets des médicaments et des substances chimiques , Régime alimentaire/médecine vétérinaire , Aliment pour animaux/analyse , Compléments alimentaires/analyse , Métabolisme lipidique/effets des médicaments et des substances chimiques , Répartition aléatoire , Thé/composition chimique
11.
Front Vet Sci ; 11: 1351962, 2024.
Article de Anglais | MEDLINE | ID: mdl-38689852

RÉSUMÉ

Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.

12.
Anim Nutr ; 17: 110-122, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38766519

RÉSUMÉ

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

13.
J Anim Sci Biotechnol ; 15(1): 61, 2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38698473

RÉSUMÉ

Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.

14.
Animals (Basel) ; 14(7)2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38612296

RÉSUMÉ

Kitasamycin (KM), a broad-spectrum macrolide antibiotic, has implications for growth performance and residue in animals and humans. This study aimed to explore the effects of different KM doses on intramuscular fat accumulation, cecal microflora, and short-chain fatty acids (SCFAs) using a growing-finishing pig model. Forty-two pigs were divided into three groups: control, subtherapeutic KM (50 mg/kg, KM50), and therapeutic KM (200 mg/kg, KM200) diets over 8 weeks. KM50 led to increased back fat thickness, fat content in the longissimus dorsi muscle (LM), and elevated plasma total cholesterol (TC) levels (p < 0.05), supported by upregulated lipid synthesis gene expression (Acc1, Fas, Scd1) (p < 0.05) in the LM. KM50 altered cecal microflora, reducing Lactobacillus spp. and Bifidobacterium spp. abundance, while increasing SCFA concentrations (acetic acid, propionic acid, total SCFAs) (p < 0.05). KM200 had minimal effects on intestinal weight and density, with increased apparent digestibility of nutrients. These findings highlight the dose-dependent impact of KM on intramuscular fat deposition. Subtherapeutic KM induced ectopic fat deposition, emphasizing potential risks in disease treatment for humans and animals.

15.
Int J Biol Macromol ; 268(Pt 1): 131589, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38643924

RÉSUMÉ

This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1ß and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.


Sujet(s)
Antioxydants , Broussonetia , Stress oxydatif , Feuilles de plante , Polyosides , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Polyosides/pharmacologie , Polyosides/composition chimique , Rats , Mâle , Feuilles de plante/composition chimique , Antioxydants/pharmacologie , Broussonetia/composition chimique , Jéjunum/effets des médicaments et des substances chimiques , Jéjunum/métabolisme , Jéjunum/anatomopathologie , Intestins/effets des médicaments et des substances chimiques , Intestins/anatomopathologie , Régime alimentaire , Modèles animaux de maladie humaine , Muqueuse intestinale/effets des médicaments et des substances chimiques , Muqueuse intestinale/métabolisme , Muqueuse intestinale/anatomopathologie , Espèces réactives de l'oxygène/métabolisme , Rat Sprague-Dawley , Peroxydation lipidique/effets des médicaments et des substances chimiques
16.
Elife ; 122024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38442142

RÉSUMÉ

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Sujet(s)
Syndrome de libération de cytokines , Interleukine-4 , Animaux , Souris , Récepteurs hépatiques X , Leucine/pharmacologie , Lipopolysaccharides , Cytokines , Transduction du signal , Macrophages , Complexe-1 cible mécanistique de la rapamycine
17.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38331814

RÉSUMÉ

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

18.
Animals (Basel) ; 14(3)2024 Feb 05.
Article de Anglais | MEDLINE | ID: mdl-38338165

RÉSUMÉ

Post-weaning diarrhea significantly contributes to the high mortality in pig production, but the metabolic changes in weaned piglets with diarrhea remain unclear. This study aimed to identify the differential metabolites in the urine of diarrheal weaned piglets and those of healthy weaned piglets to reveal the metabolic changes associated with diarrhea in weaned piglets. Nine 25-day-old piglets with diarrhea scores above 16 and an average body weight of 5.41 ± 0.18 kg were selected for the diarrhea group. Corresponding to the body weight and sex of the diarrhea group, nine 25-month-old healthy piglets with similar sex and body weights of 5.49 ± 0.21 kg were selected as the control group. Results showed that the serum C-reactive protein and cortisol of piglets in the diarrhea group were higher than those in the control group (p < 0.05). The mRNA expression of TNF-α, IFN-γ in the jejunum and colon, and IL-1ß in the jejunum were increased in diarrhea piglets (p < 0.05), accompanied by a reduction in the mRNA expression of ZO-1, ZO-2, and CLDN1 in the jejunum and colon (p < 0.05); mRNA expression of OCLN in the colon also occurred (p < 0.05). Metabolomic analysis of urine revealed increased levels of inosine, hypoxanthine, guanosine, deoxyinosin, glucosamine, glucosamine-1-p, N-Acetylmannosamine, chitobiose, and uric acid, identified as differential metabolites in diarrhea piglets compared to the controls. In summary, elevated weaning stress and inflammatory disease were associated with the abnormalities of purine metabolism and the hexosamine biosynthetic pathway of weaned piglets. This study additionally indicated the presence of energy metabolism-related diseases in diarrheal weaned piglets.

19.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38271094

RÉSUMÉ

This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ±â€…1 d old) with a mean body weight (BW) of 6.62 ±â€…0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.


Porcine epidemic diarrhea virus (PEDV) infection causes watery diarrhea, vomiting, anorexia, and high mortality in piglets, which leads to serious economic losses in many pig-producing countries. Vaccination is commonly used for the prevention of PEDV infection. However, current vaccines are ineffective in preventing infections because of genetic variants of PEDV. Therefore, developing new and efficient strategies to reduce porcine epidemic diarrhea outbreaks for piglets is desirable. Synbiotics (SYB) refer to the biological mixture of probiotics and prebiotics, which combines the advantages of both. At present, the application of probiotics or prebiotics has been widely reported in piglets feeds, which improves growth performance, immune function, microbiota community, intestinal structure, and resistance to bacterial infection. However, there was little report on whether SYB can protect piglets against PEDV infection. Therefore, this study was conducted to investigate the effects of SYB on growth performance, intestinal barrier function, and immune function in PEDV-infected weaned piglets. Results indicated that dietary SYB supplementation improved growth performance, decreased the inflammatory response, and alleviated the damage of intestinal barrier by improving innate antiviral immunity and reducing PEDV genomic copies, ultimately offering optimal protective effects against PEDV infection.


Sujet(s)
Maladies gastro-intestinales , Virus de la diarrhée porcine épidémique , Maladies des porcs , Synbiotiques , Animaux , Suidae , Compléments alimentaires , Maladies gastro-intestinales/médecine vétérinaire , Diarrhée/prévention et contrôle , Diarrhée/médecine vétérinaire , Immunité innée , Nutriments , ARN messager , Maladies des porcs/prévention et contrôle
20.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38198728

RÉSUMÉ

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Sujet(s)
Escherichia coli entérotoxigène , Infections à Escherichia coli , Huile essentielle , Maladies des porcs , Suidae , Mâle , Animaux , Saccharomyces cerevisiae , Facteur de nécrose tumorale alpha , Huile essentielle/pharmacologie , Infections à Escherichia coli/prévention et contrôle , Infections à Escherichia coli/médecine vétérinaire , Diarrhée/microbiologie , Diarrhée/médecine vétérinaire , Régime alimentaire/médecine vétérinaire , Inflammation/médecine vétérinaire , Superoxide dismutase , Maladies des porcs/prévention et contrôle , Maladies des porcs/microbiologie , Aliment pour animaux/analyse , Sevrage
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE