Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 55
Filtrer
1.
bioRxiv ; 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38979150

RÉSUMÉ

The menopausal transition (MT) is associated with an increased risk for many disorders including neurological and mental disorders. Brain imaging studies in living humans show changes in brain metabolism and structure that may contribute to the MT-associated brain disease risk. Although deficits in ovarian hormones have been implicated, cellular and molecular studies of the brain undergoing MT are currently lacking, mostly due to a difficulty in studying MT in postmortem human brain. To enable this research, we explored 39 candidate biomarkers for menopausal status in 42 pre-, peri-, and post-menopausal subjects across three postmortem tissues: blood, the hypothalamus, and pituitary gland. We identified thirteen significant and seven strongest menopausal biomarkers across the three tissues. Using these biomarkers, we generated multi-tissue and tissue-specific composite measures that allow the postmortem identification of the menopausal status across different age ranges, including the "perimenopausal", 45-55-year-old group. Our findings enable the study of cellular and molecular mechanisms underlying increased neuropsychiatric risk during the MT, opening the path for hormone status-informed, precision medicine approach in women's mental health.

2.
Science ; 384(6698): eadh4265, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38781378

RÉSUMÉ

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are risk factors for human disease. We measured chromatin accessibility in 1932 aliquots of sorted neurons and non-neurons from 616 human postmortem brains and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTLs). Only 10.4% of caQTLs are shared between neurons and non-neurons, which supports cell type-specific genetic regulation of the brain regulome. Incorporating allele-specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms that underlie disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs and identified the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides insights into disease etiology.


Sujet(s)
Encéphalopathies , Encéphale , Chromatine , Régulation de l'expression des gènes , Éléments de régulation transcriptionnelle , Humains , Allèles , Encéphale/métabolisme , Encéphalopathies/génétique , Chromatine/métabolisme , Neurones/métabolisme , Locus de caractère quantitatif , Mâle , Femelle
3.
Biol Psychiatry ; 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38821194

RÉSUMÉ

Suicide is the second leading cause of death in U.S. adolescents and young adults, and generally associated with a psychiatric disorder. Suicidal behavior has a complex etiology and pathogenesis. Moderate heritability suggests genetic causes. Associations between childhood and recent life adversity indicate contributions from epigenetic factors. Genomic contributions to suicide pathogenesis remain largely unknown. This paper is based on a workshop held to design strategies to identify molecular drivers of suicide neurobiology that would be putative new treatment targets. The panel determined that, while bulk tissue studies provide comprehensive information, single-nucleus approaches identifying cell-type specific changes are needed. While single nuclei techniques lack information on cytoplasm, processes, spines, and synapses, spatial multiomic technologies on intact tissue detect cell alterations specific to brain tissue layers and subregions. Because suicide has genetic and environmental drivers, multiomic approaches combining cell-type specific epigenome, transcriptome, and proteome provide a more complete picture of pathogenesis. To determine the direction of effect of suicide risk gene variants on RNA and protein expression, and how these interact with epigenetic marks, single nuclei and spatial multiomics quantitative trait loci maps should be integrated with whole genome sequencing and genome-wide association databases. The workshop concluded with the recommendation for the formation of an international suicide biology consortium that will bring together brain banks and investigators with expertise in cutting-edge omics technologies to delineate the biology of suicide and identify novel potential treatment targets to be tested in cellular and animal models for drug and biomarkers discovery, to guide suicide prevention.

4.
Transl Psychiatry ; 14(1): 189, 2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38605038

RÉSUMÉ

While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged. These regions implicated genes involved in developmental processes including neurogenesis and the differentiation of oligodendrocytes and glial cells. We demonstrate a significant association between differentially methylated genes in the caudate and genes implicated by GWAS not only in ADHD but also in autistic spectrum, obsessive compulsive and bipolar affective disorders through GWAS. Using transcriptomic data available on the same subjects, we found modest correlations between the methylation and expression of genes. In conclusion, this study of the cortico-striatal methylome points to gene and gene pathways involved in neurodevelopment, consistent with studies of common and rare genetic variation, as well as the post-mortem transcriptome in ADHD.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Épigénome , Humains , Attention , Trouble déficitaire de l'attention avec hyperactivité/diagnostic , Encéphale , Corps strié
5.
medRxiv ; 2023 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-37873320

RÉSUMÉ

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex. Across both regions, we observed notable differences in neuronal chromatin accessibility between schizophrenia cases and controls. A per-sample disease pseudotime was positively associated with genetic liability for schizophrenia. Organizing chromatin into cis- and trans-regulatory domains, identified a prominent neuronal trans-regulatory domain (TRD1) active in immature glutamatergic neurons during fetal development. Polygenic risk score analysis using genetic variants within chromatin accessibility of TRD1 successfully predicted susceptibility to schizophrenia in the Million Veteran Program cohort. Overall, we present the most extensive resource to date of chromatin accessibility in the human cortex, yielding insights into the cell-type specific etiology of schizophrenia.

6.
Res Sq ; 2023 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-37886514

RÉSUMÉ

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex. Across both regions, we observed notable differences in neuronal chromatin accessibility between schizophrenia cases and controls. A per-sample disease pseudotime was positively associated with genetic liability for schizophrenia. Organizing chromatin into cis- and trans-regulatory domains, identified a prominent neuronal trans-regulatory domain (TRD1) active in immature glutamatergic neurons during fetal development. Polygenic risk score analysis using genetic variants within chromatin accessibility of TRD1 successfully predicted susceptibility to schizophrenia in the Million Veteran Program cohort. Overall, we present the most extensive resource to date of chromatin accessibility in the human cortex, yielding insights into the cell-type specific etiology of schizophrenia.

7.
bioRxiv ; 2023 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-37577533

RÉSUMÉ

Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.

8.
bioRxiv ; 2023 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-37090548

RÉSUMÉ

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are major risk factors of human disease. We measured chromatin accessibility in sorted neurons and glia from 1,932 samples of human postmortem brain and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTL). Only 10.4% of caQTL are shared between neurons and glia, supporting the cell type specificity of genetic regulation of the brain regulome. Incorporating allele specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms underlying disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs, identifying the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides novel insights into brain disease etiology.

9.
J Neurosci ; 43(19): 3582-3597, 2023 05 10.
Article de Anglais | MEDLINE | ID: mdl-37037607

RÉSUMÉ

Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder. Unsupervised clustering identified major neural cell classes. Subsequent iterative clustering of neurons further revealed 20 excitatory and 22 inhibitory subclasses. Inhibitory cells were consistently more abundant in the sgACC and excitatory neuron subclusters exhibited considerable variability across brain regions. Excitatory cell subclasses also exhibited greater within-class transcriptional differences between the two regions. We used these molecular definitions to determine which cell classes might be enriched in loci carrying a genetic signal in genome-wide association studies or for differentially expressed genes in mental illness. We found that the heritable signals of psychiatric disorders were enriched in neurons and that, while the gene expression changes detected in bulk-RNA-sequencing studies were dominated by glial cells, some alterations could be identified in specific classes of excitatory and inhibitory neurons. Intriguingly, only two excitatory cell classes exhibited concomitant region-specific enrichment for both genome-wide association study loci and transcriptional dysregulation. In sum, by detailing the molecular and cellular diversity of the DLPFC and sgACC, we were able to generate hypotheses on regional and cell-specific dysfunctions that may contribute to the development of mental illness.SIGNIFICANCE STATEMENT Dysfunction of the subgenual anterior cingulate cortex has been implicated in mood disorders, particularly major depressive disorder, and the dorsolateral PFC, a subsection of the PFC involved in executive functioning, has been implicated in schizophrenia. Understanding the cellular composition of these regions is critical to elucidating the neurobiology underlying psychiatric and neurologic disorders. We studied cell type diversity of the subgenual anterior cingulate cortex and dorsolateral PFC of humans with no neuropsychiatric illness using a clustering analysis of single-nuclei RNA-sequencing data. Defining the transcriptomic profile of cellular subpopulations in these cortical regions is a first step to demystifying the cellular and molecular pathways involved in psychiatric disorders.


Sujet(s)
Trouble dépressif majeur , Cortex préfrontal dorsolatéral , Humains , Mâle , Trouble dépressif majeur/métabolisme , Gyrus du cingulum/métabolisme , Cortex préfrontal/physiologie , Étude d'association pangénomique , Noyau du tractus solitaire/métabolisme
10.
Transl Psychiatry ; 13(1): 93, 2023 03 17.
Article de Anglais | MEDLINE | ID: mdl-36932057

RÉSUMÉ

Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not. APD exposure was associated with numerous changes in the brain transcriptome, especially among SCZ patients on atypical APDs. Brain transcriptome data from macaques chronically treated with APDs showed that APDs affect the expression of many functionally relevant genes, some of which show expression changes in the same directions as those observed in SCZ. Co-expression modules enriched for synaptic function showed convergent patterns between SCZ and some of the APD effects, while those associated with inflammation and glucose metabolism exhibited predominantly divergent patterns between SCZ and APD effects. In contrast, major cell-type shifts inferred in SCZ were primarily unaffected by APD use. These results show that APDs may confound SCZ-associated gene expression changes in postmortem brain tissue. Disentangling these effects will help identify causal genes and improve our neurobiological understanding of SCZ.


Sujet(s)
Neuroleptiques , Schizophrénie , Humains , Schizophrénie/traitement médicamenteux , Schizophrénie/génétique , Neuroleptiques/pharmacologie , Neuroleptiques/usage thérapeutique , Encéphale/métabolisme , Cortex préfrontal/métabolisme , Transcriptome
11.
Neuropsychopharmacology ; 48(5): 764-772, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36694041

RÉSUMÉ

A new era of human postmortem tissue research has emerged thanks to the development of 'omics technologies that measure genes, proteins, and spatial parameters in unprecedented detail. Also newly possible is the ability to construct polygenic scores, individual-level metrics of genetic risk (also known as polygenic risk scores/PRS), based on genome-wide association studies, GWAS. Here, we report on clinical, educational, and brain gene expression correlates of polygenic scores in ancestrally diverse samples from the Human Brain Collection Core (HBCC). Genotypes from 1418 donors were subjected to quality control filters, imputed, and used to construct polygenic scores. Polygenic scores for schizophrenia predicted schizophrenia status in donors of European ancestry (p = 4.7 × 10-8, 17.2%) and in donors with African ancestry (p = 1.6 × 10-5, 10.4% of phenotypic variance explained). This pattern of higher variance explained among European ancestry samples was also observed for other psychiatric disorders (depression, bipolar disorder, substance use disorders, anxiety disorders) and for height, body mass index, and years of education. For a subset of 223 samples, gene expression from dorsolateral prefrontal cortex (DLPFC) was available through the CommonMind Consortium. In this subgroup, schizophrenia polygenic scores also predicted an aggregate gene expression score for schizophrenia (European ancestry: p = 0.0032, African ancestry: p = 0.15). Overall, polygenic scores performed as expected in ancestrally diverse samples, given historical biases toward use of European ancestry samples and variable predictive power of polygenic scores across phenotypes. The transcriptomic results reported here suggest that inherited schizophrenia genetic risk influences gene expression, even in adulthood. For future research, these and additional polygenic scores are being made available for analyses, and for selecting samples, using postmortem tissue from the Human Brain Collection Core.


Sujet(s)
Trouble bipolaire , Schizophrénie , Humains , Étude d'association pangénomique , Schizophrénie/génétique , Trouble bipolaire/génétique , Hérédité multifactorielle , Encéphale , Prédisposition génétique à une maladie/génétique
12.
Mol Psychiatry ; 28(2): 792-800, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36380233

RÉSUMÉ

Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate. Significant downregulation emerged of neurotransmitter gene pathways, particularly glutamatergic, in keeping with models that implicate these neurotransmitters in ADHD. Consistent with the genetic overlap between mental disorders, correlations were found between the cortico-striatal transcriptomic changes seen in ADHD and those seen in other neurodevelopmental and mood disorders. This transcriptomic evidence points to cortico-striatal neurotransmitter anomalies in the pathogenesis of ADHD, consistent with current models of the disorder.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Humains , Trouble déficitaire de l'attention avec hyperactivité/métabolisme , Transcriptome/génétique , Cartographie cérébrale , Imagerie par résonance magnétique , Corps strié/métabolisme , Encéphale/métabolisme
13.
Nat Neurosci ; 25(4): 474-483, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35332326

RÉSUMÉ

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104-106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.


Sujet(s)
Trouble bipolaire , Schizophrénie , Adulte , Trouble bipolaire/génétique , Encéphale , Chromatine , Humains , Lysine/génétique , Schizophrénie/génétique
14.
Diabetes ; 70(12): 2947-2956, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34649926

RÉSUMÉ

Human insulin (INS) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (Ins2) isoforms are expressed in brain choroid plexus (ChP) epithelium cells, where insulin secretion is regulated by serotonin and not by glucose. We further compared human INS isoform expression in postmortem ChP and islets of Langerhans. We uncovered novel INS upstream open reading frame isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated Cα-peptide. The middle portion of the conventional C-peptide contains ß-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Cα-peptide. Islet amyloid polypeptide (IAPP) is not expressed in ChP, and its amyloid formation was inhibited in vitro more efficiently by Cα-peptide than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase-processed Cα-peptide was significantly increased in islets from type 2 diabetes mellitus autopsy donors. Intriguingly, 100 years after the discovery of insulin, we found that INS isoforms are present in ChP from insulin-deficient autopsy donors.


Sujet(s)
Peptide C/métabolisme , Plexus choroïde/métabolisme , Insuline/métabolisme , Ilots pancréatiques/métabolisme , Adulte , Séquence d'acides aminés , Amyloïde/analyse , Amyloïde/composition chimique , Amyloïde/métabolisme , Animaux , Autopsie , Peptide C/analyse , Peptide C/composition chimique , Plexus choroïde/composition chimique , Plexus choroïde/anatomopathologie , Humains , Insuline/analyse , Insuline/composition chimique , Polypeptide amyloïde des ilots/analyse , Polypeptide amyloïde des ilots/composition chimique , Polypeptide amyloïde des ilots/métabolisme , Ilots pancréatiques/composition chimique , Ilots pancréatiques/anatomopathologie , Souris , Proinsuline/analyse , Proinsuline/composition chimique , Proinsuline/métabolisme , Isoformes de protéines/analyse , Isoformes de protéines/composition chimique , Isoformes de protéines/métabolisme
15.
Neuropsychopharmacology ; 46(7): 1364-1372, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33558674

RÉSUMÉ

Despite strong evidence of heritability and growing discovery of genetic markers for major mental illness, little is known about how gene expression in the brain differs across psychiatric diagnoses, or how known genetic risk factors shape these differences. Here we investigate expressed genes and gene transcripts in postmortem subgenual anterior cingulate cortex (sgACC), a key component of limbic circuits linked to mental illness. RNA obtained postmortem from 200 donors diagnosed with bipolar disorder, schizophrenia, major depression, or no psychiatric disorder was deeply sequenced to quantify expression of over 85,000 gene transcripts, many of which were rare. Case-control comparisons detected modest expression differences that were correlated across disorders. Case-case comparisons revealed greater expression differences, with some transcripts showing opposing patterns of expression between diagnostic groups, relative to controls. The ~250 rare transcripts that were differentially-expressed in one or more disorder groups were enriched for genes involved in synapse formation, cell junctions, and heterotrimeric G-protein complexes. Common genetic variants were associated with transcript expression (eQTL) or relative abundance of alternatively spliced transcripts (sQTL). Common genetic variants previously associated with disease risk were especially enriched for sQTLs, which together accounted for disproportionate fractions of diagnosis-specific heritability. Genetic risk factors that shape the brain transcriptome may contribute to diagnostic differences between broad classes of mental illness.


Sujet(s)
Trouble bipolaire , Trouble dépressif majeur , Trouble bipolaire/génétique , Trouble dépressif majeur/génétique , Gyrus du cingulum , Humains , ARN , Transcriptome
16.
Nat Commun ; 11(1): 2990, 2020 06 12.
Article de Anglais | MEDLINE | ID: mdl-32533064

RÉSUMÉ

Structural variants (SVs) contribute to many disorders, yet, functionally annotating them remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-mortem brains to quantify their dosage and regulatory effects. We show that genic and regulatory SVs exist at significantly lower frequencies than intergenic SVs. Functional impact of copy number variants (CNVs) stems from both the proportion of genic and regulatory content altered and loss-of-function intolerance of the gene. We train a linear model to predict expression effects of rare CNVs and use it to annotate regulatory disruption of CNVs from 14,891 independent genome-sequenced individuals. Pathogenic deletions implicated in neurodevelopmental disorders show significantly more extreme regulatory disruption scores and if rank ordered would be prioritized higher than using frequency or length alone. This work shows the deleteriousness of regulatory SVs, particularly those altering CTCF sites and provides a simple approach for functionally annotating the regulatory consequences of CNVs.


Sujet(s)
Encéphale/métabolisme , Variations de nombre de copies de segment d'ADN , Régulation de l'expression des gènes , Variation génétique , Génome humain/génétique , Autopsie/méthodes , Encéphale/anatomopathologie , Femelle , Analyse de profil d'expression de gènes/méthodes , Humains , Mâle , Troubles du développement neurologique/génétique , Analyse de séquence d'ARN/méthodes
17.
Genome Med ; 12(1): 19, 2020 02 19.
Article de Anglais | MEDLINE | ID: mdl-32075678

RÉSUMÉ

BACKGROUND: Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain's neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality. Paradoxically, however, the genetic risk sequences of psychosis and traits associated with metabolic disease, such as body mass, show very limited overlap. METHODS: We investigated the genomic interaction of SCZ with medical conditions and traits, including body mass index (BMI), by exploring the MDN's "spatial genome," including chromosomal contact landscapes as a critical layer of cell type-specific epigenomic regulation. Low-input Hi-C protocols were applied to 5-10 × 103 dopaminergic and other cell-specific nuclei collected by fluorescence-activated nuclei sorting from the adult human midbrain. RESULTS: The Hi-C-reconstructed MDN spatial genome revealed 11 "Euclidean hot spots" of clustered chromatin domains harboring risk sequences for SCZ and elevated BMI. Inter- and intra-chromosomal contacts interconnecting SCZ and BMI risk sequences showed massive enrichment for brain-specific expression quantitative trait loci (eQTL), with gene ontologies, regulatory motifs and proteomic interactions related to adipogenesis and lipid regulation, dopaminergic neurogenesis and neuronal connectivity, and reward- and addiction-related pathways. CONCLUSIONS: We uncovered shared nuclear topographies of cognitive and metabolic risk variants. More broadly, our PsychENCODE sponsored Hi-C study offers a novel genomic approach for the study of psychiatric and medical co-morbidities constrained by limited overlap of their respective genetic risk architectures on the linear genome.


Sujet(s)
Neurones dopaminergiques/métabolisme , Polymorphisme génétique , Locus de caractère quantitatif , Schizophrénie/génétique , Adipogenèse , Animaux , Indice de masse corporelle , Chromosomes/génétique , Cognition , Humains , Métabolisme lipidique , Mésencéphale/cytologie , Mésencéphale/métabolisme , Souris , Souris de lignée C57BL , Neurogenèse , Schizophrénie/métabolisme , Schizophrénie/anatomopathologie
18.
Sci Data ; 6(1): 180, 2019 09 24.
Article de Anglais | MEDLINE | ID: mdl-31551426

RÉSUMÉ

Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org .


Sujet(s)
Trouble bipolaire , Schizophrénie , Trouble bipolaire/génétique , Trouble bipolaire/anatomopathologie , Études de cohortes , Épigénomique , Humains , Cortex préfrontal/métabolisme , Cortex préfrontal/anatomopathologie , Schizophrénie/génétique , Schizophrénie/anatomopathologie , Transcriptome
19.
Neuropsychopharmacology ; 43(11): 2285-2291, 2018 10.
Article de Anglais | MEDLINE | ID: mdl-30050047

RÉSUMÉ

GABAergic mechanisms have been shown to contribute to cognitive aging in animal models, but there is currently limited in vivo evidence to support this relationship in humans. It is also unclear whether aging is associated with changes in GABA levels measured with proton magnetic resonance spectroscopy (MRS). Spectral-editing MRS at 3 T was used to measure GABA in the dorsal anterior cingulate cortex (dACC) for a large sample of healthy volunteers (N = 229) aged 18-55. In a subset of 171 participants, age effects on several cognitive tasks were studied. We formally tested whether the MRS measures mediated the relationship between age and cognition. Robust associations of age with performance were found for the Wisconsin Card Sorting Test ([WCST], p < 0.0001). Age was also significantly associated with declining levels of GABA in the dACC (p < 0.001), and GABA levels significantly predicted WCST performance (p < 0.0004). Mediation analysis revealed that GABA in the dACC mediated the effect of age on WCST performance (p < 0.01). Other metabolites were similarly associated with age, but only GABA and creatine levels were significantly associated with WCST performance. No association with age or cognitive performance was found in a frontal white matter control region in a subset of participants. The association of GABA with WCST performance was not related to the amount of brain atrophy associated with aging as measured by the proportion of CSF, gray, and white matter in the MRS voxel. These results implicate GABAergic and possibly energetic metabolism in the dACC as mechanisms of age effects in executive function.


Sujet(s)
Vieillissement/métabolisme , Dysfonctionnement cognitif/métabolisme , Gyrus du cingulum/métabolisme , Acide gamma-amino-butyrique/métabolisme , Adolescent , Adulte , Vieillissement/psychologie , Cognition/physiologie , Dysfonctionnement cognitif/diagnostic , Dysfonctionnement cognitif/psychologie , Femelle , Humains , Spectroscopie par résonance magnétique/méthodes , Mâle , Adulte d'âge moyen , Test de classement de cartes du Wisconsin , Jeune adulte
20.
Eur J Neurosci ; 48(3): 1884-1895, 2018 08.
Article de Anglais | MEDLINE | ID: mdl-30033547

RÉSUMÉ

Dopamine transporters (DAT) are implicated in the pathogenesis and treatment of attention-deficit hyperactivity disorder (ADHD) and are upregulated by chronic treatment with methylphenidate, commonly prescribed for ADHD. Methylation of the DAT1 gene in brain and blood has been associated with DAT expression in rodents' brains. Here we tested the association between methylation of the DAT1 promoter derived from blood and DAT availability in the striatum of unmedicated ADHD adult participants and in that of healthy age-matched controls (HC) using Positron Emission Tomography (PET) and [11 C]cocaine. Results showed no between-group differences in DAT1 promoter methylation or striatal DAT availability. However, the degree of methylation in the promoter region of DAT1 correlated negatively with DAT availability in caudate in ADHD participants only. DAT availability in VS correlated with inattention scores in ADHD participants. We verified in a postmortem cohort with ADHD diagnosis and without, that DAT1 promoter methylation in peripheral blood correlated positively with DAT1 promoter methylation extracted from substantia nigra (SN) in both groups. In the cohort without ADHD diagnosis, DAT1 gene expression in SN further correlated positively with DAT protein expression in caudate; however, the sample size of the cohort with ADHD was insufficient to investigate DAT1 and DAT expression levels. Overall, these findings suggest that peripheral DAT1 promoter methylation may be predictive of striatal DAT availability in adults with ADHD. Due to the small sample size, more work is needed to validate whether DAT1 methylation in blood predicts DAT1 methylation in SN in ADHD and controls.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité/sang , Trouble déficitaire de l'attention avec hyperactivité/génétique , Noyau caudé/métabolisme , Méthylation de l'ADN , Transporteurs de la dopamine/sang , Transporteurs de la dopamine/génétique , Adulte , Femelle , Humains , Mâle , Régions promotrices (génétique) , Substantia nigra/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...