Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Gamme d'année
1.
Ecol Evol ; 11(11): 7080-7092, 2021 Jun.
Article de Anglais | MEDLINE | ID: mdl-34141277

RÉSUMÉ

Loss of developmental stability can lead to deviations from bilateral symmetry (i.e. Fluctuating Asymmetry - FA), and is thought to be caused by environmental and genetic factors associated with habitat loss and stress. Therefore, levels of FA might be a valuable tool to monitor wild populations if FA serves as an indicator of exposure to stress due to impacts of habitat loss and fragmentation. In studies examining FA and habitat fragmentation, FA levels are often explained by loss of genetic variation, though few studies have addressed FA's use as indicator of environmental impact. Here, we investigated whether habitat loss, genetic variation, and/or inbreeding affect the developmental instability in Brazilian Atlantic forest populations of a Neotropical water rat (Nectomys squamipes). We sampled individuals from eight sites within Atlantic forest remnants with different amounts of available forest habitat and assessed FA levels with geometric morphometric techniques using adult mandibles. We used observed heterozygosity (Ho) and inbreeding coefficient (Fis), from seven microsatellite markers, as a proxy of genetic variation at individual and population levels. Populations were not significantly different for shape or size FA levels. Furthermore, interindividual variation in both shape and size FA levels and interpopulational differences in size FA levels were best explained by chance. However, habitat amount was negatively associated with both interpopulational variance and average shape FA levels. This association was stronger in populations living in areas with <28% of forest cover, which presented higher variance and higher average FA, suggesting that Nectomys squamipes might have a tolerance threshold to small availability of habitat. Our work is one of the first to use FA to address environmental stress caused by habitat loss in small mammal populations from a Neotropical biome. We suggest that shape FA might serve as a conservation tool to monitor human impact on natural animal populations.

2.
PLoS One ; 7(10): e48627, 2012.
Article de Anglais | MEDLINE | ID: mdl-23119074

RÉSUMÉ

Heliconius butterflies are an excellent system for understanding the genetic basis of phenotypic change. Here we document surprising diversity in the genetic control of a common phenotype. Two disjunct H. erato populations have each recruited the Cr and/or Sd loci that control similar yellow hindwing patterns, but the alleles involved partially complement one another indicating either multiple origins for the patterning alleles or developmental drift in genetic control of similar patterns. We show that in these H. erato populations cr and sd are epistatically interacting and that the parental origin of alleles can explain phenotypes of backcross individuals. In contrast, mimetic H. melpomene populations with identical phenotypes (H. m. rosina and H. m. amaryllis) do not show genetic complementation (F(1)s and F(2)s are phenotypically identical to parentals). Finally, we report hybrid female inviability in H. m. melpomene × H. m. rosina crosses (previously only female infertility had been reported) and presence of standing genetic variation for alternative color alleles at the Yb locus in true breeding H. melpomene melpomene populations (expressed when in a different genomic background) that could be an important source of variation for the evolution of novel phenotypes or a result of developmental drift. Although recent work has emphasized the simple genetic control of wing pattern in Heliconius, we show there is underlying complexity in the allelic variation and epistatic interactions between major patterning loci.


Sujet(s)
Adaptation biologique/génétique , Papillons/génétique , Pigmentation/génétique , Ailes d'animaux/métabolisme , Animaux , Papillons/anatomie et histologie , Croisements génétiques , Épistasie , Évolution moléculaire , Femelle , Guyane française , Gènes d'insecte/génétique , Locus génétiques/génétique , Variation génétique , Génétique des populations , Génotype , Géographie , Infertilité féminine/génétique , Mâle , Panama , Phénotype , Polymorphisme de nucléotide simple , Spécificité d'espèce , Ailes d'animaux/anatomie et histologie
3.
Genet. mol. biol ; Genet. mol. biol;28(4): 693-699, Dec. 2005. mapas, tab
Article de Anglais | LILACS | ID: lil-451010

RÉSUMÉ

Seven microsatellite loci were used to investigate the genetic variability and structure of six mainland and two island populations of the Neotropical water rat Nectomys squamipes, a South American semi-aquatic rodent species with a wide distribution. High levels of variability were found within mainland populations while island populations were less variable but the more differentiated in respect to allele number and frequency. The time of biological divergence between mainland and island populations coincided with geological data. A significant geographic structure was found in mainland populations (q = 0.099; r = 0.086) although the degree of differentiation was relatively low in respect to the distance between surveyed localities (24 to 740 km). Genetic and geographic distances were not positively correlated as previously found with random amplified polymorphic DNA (RAPD) markers. Significant but low genetic differentiation in the mainland and lack of isolation by distance can be explained by large population size and/or recent population expansion. Additionally, the agreement between the age of geologic events (sea level fluctuations) and divergence times for insular populations points to a good reference for molecular clock calibration to associate recent environmental changes and the distribution pattern of small mammals in the Brazilian Atlantic Forest


Sujet(s)
Animaux , Variation génétique , Rats/génétique , Répétitions microsatellites , Rodentia/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE