Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 25
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Elife ; 122024 Jan 09.
Article de Anglais | MEDLINE | ID: mdl-38193901

RÉSUMÉ

Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.


Sujet(s)
Protéines de Drosophila , Drosophila , Récepteurs Notch , Facteurs de transcription , Animaux , Chromatine , Protéines de Drosophila/génétique , Génomique , Neurones , Facteurs de transcription à domaine POU , Facteurs de transcription/génétique , Récepteurs Notch/génétique
2.
Dev Cell ; 58(24): 3048-3063.e6, 2023 Dec 18.
Article de Anglais | MEDLINE | ID: mdl-38056452

RÉSUMÉ

Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.


Sujet(s)
Protéines de Drosophila , Drosophila , Animaux , Drosophila/métabolisme , Histone/métabolisme , Chromatine/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Lignage cellulaire , Intestins , Différenciation cellulaire/génétique
3.
Development ; 150(21)2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37800333

RÉSUMÉ

Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.


Sujet(s)
Protéines de Drosophila , Drosophila , Animaux , Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Histone Demethylases/métabolisme , Chromatine , Biologie
4.
Development ; 150(2)2023 01 15.
Article de Anglais | MEDLINE | ID: mdl-36692218

RÉSUMÉ

The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFß signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.


Sujet(s)
Protéines de Drosophila , Drosophila , Protéines de liaison à l'ARN , Animaux , Division cellulaire , Prolifération cellulaire , Drosophila/métabolisme , Protéines de Drosophila/métabolisme , Protéines proto-oncogènes c-myc/métabolisme , Protéines de liaison à l'ARN/métabolisme , Activation de la transcription
5.
Methods Mol Biol ; 2458: 195-213, 2022.
Article de Anglais | MEDLINE | ID: mdl-35103969

RÉSUMÉ

Targeted DamID (TaDa) is a means of profiling the binding of any DNA-associated protein cell-type specifically, including transcription factors, RNA polymerase, and chromatin-modifying proteins. The technique is highly sensitive, highly reproducible, requires no mechanical disruption, cell isolation or antibody purification, and can be performed by anyone with basic molecular biology knowledge. Here, we describe the TaDa method and downstream bioinformatics data processing.


Sujet(s)
Chromatine , Méthylation de l'ADN , Chromatine/génétique , ADN/métabolisme , Analyse de séquence d'ADN/méthodes , Facteurs de transcription/métabolisme
6.
J Neurochem ; 161(3): 219-235, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35083747

RÉSUMÉ

Mutations to genes that encode DNA-binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non-native gene regulatory actions in developing neurons, leading to cell-morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.


Sujet(s)
Régulation de l'expression des gènes , Facteurs de transcription , Animaux , Humains , Mammifères/métabolisme , Mutation , Mutation faux-sens/génétique , Neurones/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
7.
Elife ; 102021 03 17.
Article de Anglais | MEDLINE | ID: mdl-33729157

RÉSUMÉ

Mutations in the lysine demethylase 5 (KDM5) family of transcriptional regulators are associated with intellectual disability, yet little is known regarding their spatiotemporal requirements or neurodevelopmental contributions. Utilizing the mushroom body (MB), a major learning and memory center within the Drosophila brain, we demonstrate that KDM5 is required within ganglion mother cells and immature neurons for proper axogenesis. Moreover, the mechanism by which KDM5 functions in this context is independent of its canonical histone demethylase activity. Using in vivo transcriptional and binding analyses, we identify a network of genes directly regulated by KDM5 that are critical modulators of neurodevelopment. We find that KDM5 directly regulates the expression of prospero, a transcription factor that we demonstrate is essential for MB morphogenesis. Prospero functions downstream of KDM5 and binds to approximately half of KDM5-regulated genes. Together, our data provide evidence for a KDM5-Prospero transcriptional axis that is essential for proper MB development.


Sujet(s)
Protéines de Drosophila/métabolisme , Histone Demethylases/métabolisme , Corps pédonculés/métabolisme , Protéines de tissu nerveux/métabolisme , Protéines nucléaires/métabolisme , Facteurs de transcription/métabolisme , Animaux , Système nerveux central/croissance et développement , Système nerveux central/métabolisme , Drosophila/génétique , Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Régulation de l'expression des gènes au cours du développement , Histone Demethylases/génétique , Larve/croissance et développement , Larve/métabolisme , Mutation , Protéines de tissu nerveux/génétique , Neurones/métabolisme , Protéines nucléaires/génétique , Facteurs de transcription/génétique
8.
G3 (Bethesda) ; 11(1)2021 01 18.
Article de Anglais | MEDLINE | ID: mdl-33561239

RÉSUMÉ

Targeted DamID (TaDa) is an increasingly popular method of generating cell-type-specific DNA-binding profiles in vivo. Although sensitive and versatile, TaDa requires the generation of new transgenic fly lines for every protein that is profiled, which is both time-consuming and costly. Here, we describe the FlyORF-TaDa system for converting an existing FlyORF library of inducible open reading frames (ORFs) to TaDa lines via a genetic cross, with recombinant progeny easily identifiable by eye color. Profiling the binding of the H3K36me3-associated chromatin protein MRG15 in larval neural stem cells using both FlyORF-TaDa and conventional TaDa demonstrates that new lines generated using this system provide accurate and highly reproducible DamID-binding profiles. Our data further show that MRG15 binds to a subset of active chromatin domains in vivo. Courtesy of the large coverage of the FlyORF library, the FlyORF-TaDa system enables the easy creation of TaDa lines for 74% of all transcription factors and chromatin-modifying proteins within the Drosophila genome.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Animaux , Chromatine , Protéines chromosomiques nonhistones , ADN , Méthylation de l'ADN , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Liaison aux protéines
9.
Curr Biol ; 31(8): 1744-1753.e5, 2021 04 26.
Article de Anglais | MEDLINE | ID: mdl-33621481

RÉSUMÉ

Stem cells reside in specialized microenvironments or niches that balance stem cell proliferation and differentiation.1,2 The extracellular matrix (ECM) is an essential component of most niches, because it controls niche homeostasis, provides physical support, and conveys extracellular signals.3-11 Basement membranes (BMs) are thin ECM sheets that are constituted mainly by Laminins, Perlecan, Collagen IV, and Entactin/Nidogen and surround epithelia and other tissues.12 Perlecans are secreted proteoglycans that interact with ECM proteins, ligands, receptors, and growth factors such as FGF, PDGF, VEGF, Hedgehog, and Wingless.13-18 Thus, Perlecans have structural and signaling functions through the binding, storage, or sequestering of specific ligands. We have used the Drosophila ovary to assess the importance of Perlecan in the functioning of a stem cell niche. Ovarioles in the adult ovary are enveloped by an ECM sheath and possess a tapered structure at their anterior apex termed the germarium. The anterior tip of the germarium hosts the germline niche, where two to four germline stem cells (GSCs) reside together with a few somatic cells: terminal filament cells (TFCs), cap cells (CpCs), and escort cells (ECs).19 We report that niche architecture in the developing gonad requires trol, that niche cells secrete an isoform-specific Perlecan-rich interstitial matrix, and that DE-cadherin-dependent stem cell-niche adhesion necessitates trol. Hence, we provide evidence to support a structural role for Perlecan in germline niche establishment during larval stages and in the maintenance of a normal pool of stem cells in the adult niche.


Sujet(s)
Drosophila , Niche de cellules souches , Animaux , Protéines de Drosophila/génétique , Drosophila melanogaster , Femelle , Protéoglycanes à sulfate d'héparane , Ligands , Ovaire
10.
G3 (Bethesda) ; 10(12): 4459-4471, 2020 12 03.
Article de Anglais | MEDLINE | ID: mdl-33051260

RÉSUMÉ

Epigenetic silencing by Polycomb group (PcG) complexes can promote epithelial-mesenchymal transition (EMT) and stemness and is associated with malignancy of solid cancers. Here we report a role for Drosophila PcG repression in a partial EMT event that occurs during wing disc eversion, an early event during metamorphosis. In a screen for genes required for eversion we identified the PcG genes Sexcombs extra (Sce) and Sexcombs midleg (Scm) Depletion of Sce or Scm resulted in internalized wings and thoracic clefts, and loss of Sce inhibited the EMT of the peripodial epithelium and basement membrane breakdown, ex vivo. Targeted DamID (TaDa) using Dam-Pol II showed that Sce knockdown caused a genomic transcriptional response consistent with a shift toward a more stable epithelial fate. Surprisingly only 17 genes were significantly upregulated in Sce-depleted cells, including Abd-B, abd-A, caudal, and nubbin Each of these loci were enriched for Dam-Pc binding. Of the four genes, only Abd-B was robustly upregulated in cells lacking Sce expression. RNAi knockdown of all four genes could partly suppress the Sce RNAi eversion phenotype, though Abd-B had the strongest effect. Our results suggest that in the absence of continued PcG repression peripodial cells express genes such as Abd-B, which promote epithelial state and thereby disrupt eversion. Our results emphasize the important role that PcG suppression can play in maintaining cell states required for morphogenetic events throughout development and suggest that PcG repression of Hox genes may affect epithelial traits that could contribute to metastasis.


Sujet(s)
Protéines de Drosophila , Drosophila , Protéines du groupe Polycomb , Animaux , Drosophila/génétique , Protéines de Drosophila/génétique , Transition épithélio-mésenchymateuse/génétique , Complexe répresseur Polycomb-1 , Protéines du groupe Polycomb/génétique
11.
Development ; 147(11)2020 06 11.
Article de Anglais | MEDLINE | ID: mdl-32527935

RÉSUMÉ

Here, we report novel tumour suppressor activity for the Drosophila Argonaute family RNA-binding protein AGO1, a component of the miRNA-dependent RNA-induced silencing complex (RISC). The mechanism for growth inhibition does not, however, involve canonical roles as part of the RISC; rather, AGO1 controls cell and tissue growth by functioning as a direct transcriptional repressor of the master regulator of growth, Myc. AGO1 depletion in wing imaginal discs drives a significant increase in ribosome biogenesis, nucleolar expansion and cell growth in a manner dependent on Myc abundance. Moreover, increased Myc promoter activity and elevated Myc mRNA in AGO1-depleted animals requires RNA polymerase II transcription. Further support for transcriptional AGO1 functions is provided by physical interaction with the RNA polymerase II transcriptional machinery (chromatin remodelling factors and Mediator Complex), punctate nuclear localisation in euchromatic regions and overlap with Polycomb Group transcriptional silencing loci. Moreover, significant AGO1 enrichment is observed on the Myc promoter and AGO1 interacts with the Myc transcriptional activator Psi. Together, our data show that Drosophila AGO1 functions outside of the RISC to repress Myc transcription and inhibit developmental cell and tissue growth.This article has an associated 'The people behind the papers' interview.


Sujet(s)
Protéines Argonaute/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/métabolisme , Drosophila/métabolisme , Facteurs de transcription/métabolisme , Animaux , Animal génétiquement modifié/métabolisme , Protéines Argonaute/antagonistes et inhibiteurs , Protéines Argonaute/génétique , Protéines de liaison à l'ADN/antagonistes et inhibiteurs , Protéines de liaison à l'ADN/génétique , Drosophila/croissance et développement , Protéines de Drosophila/antagonistes et inhibiteurs , Protéines de Drosophila/génétique , Larve/métabolisme , microARN/métabolisme , Mutagenèse dirigée , Régions promotrices (génétique) , Interférence par ARN , RNA polymerase II/génétique , RNA polymerase II/métabolisme , ARN messager/métabolisme , Protéines de liaison à l'ARN/antagonistes et inhibiteurs , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Ribosomes/métabolisme , Facteurs de transcription/antagonistes et inhibiteurs , Facteurs de transcription/génétique , Transcription génétique , Ailes d'animaux/croissance et développement , Ailes d'animaux/physiologie
12.
Dev Cell ; 49(4): 556-573.e6, 2019 05 20.
Article de Anglais | MEDLINE | ID: mdl-31112698

RÉSUMÉ

Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1. We demonstrate that the Trithorax-related/MLL3/4 chromatin modifier regulates ISC proliferation, colocalizes extensively with Kismet throughout the ISC genome, and co-regulates genes in ISCs, including Cbl, a negative regulator of Epidermal Growth Factor Receptor (EGFR). Loss of kismet or trr leads to elevated levels of EGFR protein and signaling, thereby promoting ISC self-renewal. We propose that Kismet with Trr establishes a chromatin state that limits EGFR proliferative signaling, preventing tumor-like stem cell overgrowths.


Sujet(s)
Chromatine/métabolisme , Helicase/métabolisme , Protéines de Drosophila/métabolisme , Histone-lysine N-methyltransferase/métabolisme , Protéines à homéodomaine/métabolisme , Animaux , Différenciation cellulaire/physiologie , Prolifération cellulaire/physiologie , Assemblage et désassemblage de la chromatine/physiologie , Helicase/physiologie , Protéines de Drosophila/physiologie , Drosophila melanogaster/métabolisme , Récepteurs ErbB/métabolisme , Histone-lysine N-methyltransferase/physiologie , Histone/métabolisme , Protéines à homéodomaine/physiologie , RNA polymerase II/génétique , RNA polymerase II/métabolisme , Récepteur peptidique invertébrés/métabolisme , Transduction du signal/physiologie , Cellules souches/métabolisme , Facteurs de transcription/métabolisme
13.
Biochem Soc Trans ; 47(2): 691-700, 2019 04 30.
Article de Anglais | MEDLINE | ID: mdl-30902925

RÉSUMÉ

The organisation of DNA into differing forms of packaging, or chromatin, controls many of the cell fate decisions during development. Although early studies focused on individual forms of chromatin, in the last decade more holistic studies have attempted to determine a complete picture of the different forms of chromatin present within a cell. In the fruit fly, Drosophila melanogaster, the study of chromatin states has been aided by the use of complementary and cell-type-specific techniques that profile the marks that recruit chromatin protein binding or the proteins themselves. Although many questions remain unanswered, a clearer picture of how different chromatin states affect development is now emerging, with more unusual chromatin states such as Black chromatin playing key roles. Here, we discuss recent findings regarding chromatin biology in flies.


Sujet(s)
Chromatine/génétique , Animaux , Biologie du développement , Protéines de Drosophila/génétique , Drosophila melanogaster , Épigénomique
14.
Proc Natl Acad Sci U S A ; 115(48): 12218-12223, 2018 11 27.
Article de Anglais | MEDLINE | ID: mdl-30404917

RÉSUMÉ

Epithelial homeostasis requires the precise balance of epithelial stem/progenitor proliferation and differentiation. While many signaling pathways that regulate epithelial stem cells have been identified, it is probable that other regulators remain unidentified. Here, we use gene-expression profiling by targeted DamID to identify the stem/progenitor-specific transcription and signaling factors in the Drosophila midgut. Many signaling pathway components, including ligands of most major pathways, exhibit stem/progenitor-specific expression and have regulatory regions bound by both intrinsic and extrinsic transcription factors. In addition to previously identified stem/progenitor-derived ligands, we show that both the insulin-like factor Ilp6 and TNF ligand eiger are specifically expressed in the stem/progenitors and regulate normal tissue homeostasis. We propose that intestinal stem cells not only integrate multiple signals but also contribute to and regulate the homeostatic signaling microenvironmental niche through the expression of autocrine and paracrine factors.


Sujet(s)
Drosophila/physiologie , Intestins/cytologie , Niche de cellules souches , Cellules souches/cytologie , Animaux , Drosophila/cytologie , Protéines de Drosophila/métabolisme , Homéostasie , Transduction du signal , Cellules souches/métabolisme
15.
Nat Commun ; 8(1): 2271, 2017 12 22.
Article de Anglais | MEDLINE | ID: mdl-29273756

RÉSUMÉ

A key question in developmental biology is how cellular differentiation is controlled during development. While transitions between trithorax-group (TrxG) and polycomb-group (PcG) chromatin states are vital for the differentiation of ES cells to multipotent stem cells, little is known regarding the role of chromatin states during development of the brain. Here we show that large-scale chromatin remodelling occurs during Drosophila neural development. We demonstrate that the majority of genes activated during neuronal differentiation are silent in neural stem cells (NSCs) and occupy black chromatin and a TrxG-repressive state. In neurons, almost all key NSC genes are switched off via HP1-mediated repression. PcG-mediated repression does not play a significant role in regulating these genes, but instead regulates lineage-specific transcription factors that control spatial and temporal patterning in the brain. Combined, our data suggest that forms of chromatin other than canonical PcG/TrxG transitions take over key roles during neural development.


Sujet(s)
Différenciation cellulaire/génétique , Assemblage et désassemblage de la chromatine/génétique , Chromatine/métabolisme , Régulation de l'expression des gènes au cours du développement , Cellules souches neurales/métabolisme , Neurogenèse/génétique , Neurones/métabolisme , Animaux , Drosophila
16.
Nat Protoc ; 11(9): 1586-98, 2016 09.
Article de Anglais | MEDLINE | ID: mdl-27490632

RÉSUMÉ

This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.


Sujet(s)
Séparation cellulaire/méthodes , Chromatine/métabolisme , ADN/génétique , ADN/métabolisme , Séquençage nucléotidique à haut débit/méthodes , Analyse de séquence d'ADN/méthodes , Animaux , Méthylation de l'ADN , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Génomique , Liaison aux protéines , Facteurs temps
17.
Bioinformatics ; 31(20): 3371-3, 2015 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-26112292

RÉSUMÉ

UNLABELLED: DamID is a powerful technique for identifying regions of the genome bound by a DNA-binding (or DNA-associated) protein. Currently, no method exists for automatically processing next-generation sequencing DamID (DamID-seq) data, and the use of DamID-seq datasets with normalization based on read-counts alone can lead to high background and the loss of bound signal. DamID-seq thus presents novel challenges in terms of normalization and background minimization. We describe here damidseq_pipeline, a software pipeline that performs automatic normalization and background reduction on multiple DamID-seq FASTQ datasets. AVAILABILITY AND IMPLEMENTATION: Open-source and freely available from http://owenjm.github.io/damidseq_pipeline. The damidseq_pipeline is implemented in Perl and is compatible with any Unix-based operating system (e.g. Linux, Mac OSX). CONTACT: o.marshall@gurdon.cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Sujet(s)
Protéines de liaison à l'ADN/métabolisme , Analyse de séquence d'ADN/méthodes , Logiciel , Sites de fixation , Séquençage nucléotidique à haut débit/méthodes
18.
Cancer Cell ; 26(5): 653-67, 2014 Nov 10.
Article de Anglais | MEDLINE | ID: mdl-25517748

RÉSUMÉ

We isolated and analyzed, at single-nucleotide resolution, cancer-associated neochromosomes from well- and/or dedifferentiated liposarcomas. Neochromosomes, which can exceed 600 Mb in size, initially arise as circular structures following chromothripsis involving chromosome 12. The core of the neochromosome is amplified, rearranged, and corroded through hundreds of breakage-fusion-bridge cycles. Under selective pressure, amplified oncogenes are overexpressed, while coamplified passenger genes may be silenced epigenetically. New material may be captured during punctuated chromothriptic events. Centromeric corrosion leads to crisis, which is resolved through neocentromere formation or native centromere capture. Finally, amplification terminates, and the neochromosome core is stabilized in linear form by telomere capture. This study investigates the dynamic mutational processes underlying the life history of a special form of cancer mutation.


Sujet(s)
Chromosomes humains/génétique , Liposarcome/génétique , Tumeurs du rétropéritoine/génétique , Sujet âgé , Carcinogenèse/génétique , Lignée cellulaire tumorale , Centromère/génétique , Aberrations des chromosomes , Femelle , Humains , Liposarcome/anatomopathologie , Modèles génétiques , Mutagenèse , Oncogènes , Tumeurs du rétropéritoine/anatomopathologie , Translocation génétique
19.
Dev Cell ; 26(1): 101-12, 2013 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-23792147

RÉSUMÉ

Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed "TaDa," a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates.


Sujet(s)
Encéphale/métabolisme , Chromatine/métabolisme , Analyse de profil d'expression de gènes/méthodes , Cellules souches neurales/enzymologie , RNA polymerase II/analyse , Animaux , Encéphale/cytologie , Séparation cellulaire , Chromatine/génétique , Méthylation de l'ADN , Drosophila/enzymologie , Drosophila/génétique , Réseaux de régulation génique , Gènes d'insecte , Cellules souches neurales/cytologie , Cellules neuroépithéliales/cytologie , Cellules neuroépithéliales/enzymologie , Liaison aux protéines , RNA polymerase II/génétique , ARN messager/analyse , ARN messager/génétique , Reproductibilité des résultats , Sensibilité et spécificité , Transcription génétique
20.
Proc Natl Acad Sci U S A ; 109(6): 1979-84, 2012 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-22308327

RÉSUMÉ

Transcription of the centromeric regions has been reported to occur in G1 and S phase in different species. Here, we investigate whether transcription also occurs and plays a functional role at the mammalian centromere during mitosis. We show the presence of actively transcribing RNA polymerase II (RNAPII) and its associated transcription factors, coupled with the production of centromere satellite transcripts at the mitotic kinetochore. Specific inhibition of RNAPII activity during mitosis leads to a decrease in centromeric α-satellite transcription and a concomitant increase in anaphase-lagging cells, with the lagging chromosomes showing reduced centromere protein C binding. These findings demonstrate an essential role of RNAPII in the transcription of α-satellite DNA, binding of centromere protein C, and the proper functioning of the mitotic kinetochore.


Sujet(s)
Centromère/métabolisme , Mitose , RNA polymerase II/métabolisme , Transcription génétique , Animaux , Protéines chromosomiques nonhistones/métabolisme , Chromosomes de mammifère/métabolisme , ADN satellite/métabolisme , Protéines de liaison à l'ADN/métabolisme , Régulation de l'expression des gènes , Cellules HeLa , Humains , Kinétochores/métabolisme , Souris , Phosphoprotein Phosphatases , Transport des protéines , ARN messager/génétique , ARN messager/métabolisme , Sérine/métabolisme , Facteurs de transcription/composition chimique , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE