Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Plant Sci ; 12: 628795, 2021.
Article de Anglais | MEDLINE | ID: mdl-33995433

RÉSUMÉ

Insect damage to cones and seeds has a strong impact on the regeneration of conifer forest ecosystems, with broader implications for ecological and economic services. Lack of control of insect populations can lead to important economic and environmental losses. Pinus strobiformis is the most widespread of the white pines in Mexico and is widely distributed throughout the mountains of northern Mexico. Relatively few studies have examined insect damage to the cones and seeds of these pines, especially in Mexico. In this study, we therefore analyzed insect damage to cones and seeds of P. strobiformis in Mexico by using X-ray and stereomicroscopic analysis. The specific objectives of the study were (a) to characterize insect damage by measuring external and internal cone traits, (b) to assess the health of seeds and cones of P. strobiformis in the Sierra Madre Occidental, Mexico, and (c) to estimate the relative importance of the effects of different environmental variables on cone and seed damage caused by insects. We found that 80% of P. strobiformis seeds and 100% of the tree populations studied had damage caused by insects. Most seeds were affected by Leptoglossus occidentalis, Tetyra bipunctata, Megastigmus albifrons, and the Lepidoptera complex (which includes Apolychrosis synchysis, Cydia latisigna, Eucosma bobana, and Dioryctria abietivorella). The cones of all tree populations were affected by some type of insect damage, with Lepidoptera causing most of the damage (72%), followed by Conophthorus ponderosae (15%), the hemipteran L. occidentalis (7%), and the wasp M. albifrons (6%). The proportion of incomplete seeds in P. strobiformis at the tree level, cone damage by M. albifrons and seed damage in L. occidentalis were associated with various climate and soil variables and with crown dieback. Thus, cone and seed insect damage can be severe and potentially impact seed production in P. strobiformis and the reforestation potential of the species. The study findings will enable managers to better identify insects that cause damage to cone and seeds. In addition, identification of factors associated with damage may be useful for predicting the levels of insect predation on seeds and cones.

2.
Front Plant Sci ; 11: 559697, 2020.
Article de Anglais | MEDLINE | ID: mdl-33193485

RÉSUMÉ

The phenotype of trees is determined by the relationships and interactions among genetic and environmental influences. Understanding the patterns and processes that are responsible for phenotypic variation is facilitated by studying the relationships between phenotype and the environment among many individuals across broad ecological and climatic gradients. We used Pinus strobiformis, which has a wide latitudinal distribution, as a model species to: (a) estimate the relative importance of different environmental factors in predicting these morphological traits and (b) characterize the spatial patterns of standing phenotypic variation of cone and seed traits across the species' range. A large portion of the total variation in morphological characteristics was explained by ecological, climatic and geographical variables (54.7% collectively). The three climate, vegetation and geographical variable groups, each had similar total ability to explain morphological variation (43.4%, 43.8%, 51.5%, respectively), while the topographical variable group had somewhat lower total explanatory power (36.9%). The largest component of explained variance (33.6%) was the four-way interaction of all variable sets, suggesting that there is strong covariation in environmental, climate and geographical variables in their relationship to morphological traits of southwest white pine across its range. The regression results showed that populations in more humid and warmer climates expressed greater cone length and seed size. This may in part facilitate populations of P. strobiformis in warmer and wetter portions of its range growing in dense, shady forest stands, because larger seeds provide greater resources to germinants at the time of germination. Our models provide accurate predictions of morphological traits and important insights regarding the factors that contribute to their expression. Our results indicate that managers should be conservative during reforestation efforts to ensure match between ecotypic variation in seed source populations. However, we also note that given projected large range shift due to climate change, managers will have to balance the match between current ecotypic variation and expected range shift and changes in local adaptive optima under future climate conditions.

3.
PLoS One ; 12(12): e0189695, 2017.
Article de Anglais | MEDLINE | ID: mdl-29261732

RÉSUMÉ

We analyzed the diet of Baird's Sparrow (Ammodramus bairdii) and Grasshopper Sparrow (A. savannarum) in three different sites and sampling periods across the Chihuahuan Desert in northern Mexico. DNA from seeds in regurgitated stomach contents was sequenced using NGS technology and identified with a barcoding approach using the P6 loop of the trnL intron as genetic marker. During each sampling period, we collected random soil samples to estimate seed availability in the soil seed bank. Due to the variability and size of the genetic marker, the resolution was limited to a family level resolution for taxonomic classification of seeds, but in several cases a genus level was achieved. Diets contained a high diversity of seeds but were dominated by a limited number of genera/families. Seeds from Panicoideae (from the genera Panicum, Setaria, Eriochloa, Botriochloa, and Hackelochloa) contributed for the largest part to the diets (53 ± 19%), followed by Bouteloua (10 ± 12%). Depending on the site and sampling period, other important seeds in the diets were Eragrostideae, Pleuraphis, Asteraceae, Verbena, and Amaranthus. The most abundant seeds were not always preferred. Aristida and Chloris were common in the soil seed bank but these seeds were avoided by both bird species. Baird's and Grasshopper sparrows did not differ in seed preferences. This work highlights the importance of range management practices that favor seed production of Panicoideae and Bouteloua grasses to enhance winter habitat use and survival of Baird's and Grasshopper sparrows in the Chihuahuan Desert.


Sujet(s)
Régime alimentaire , Contenus gastro-intestinaux , Prairie , Saisons , Graines , Moineaux/physiologie , Animaux , Codage à barres de l'ADN pour la taxonomie , Séquençage nucléotidique à haut débit
5.
PLoS One ; 10(10): e0140442, 2015.
Article de Anglais | MEDLINE | ID: mdl-26496189

RÉSUMÉ

The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.


Sujet(s)
Phénomènes écologiques et environnementaux , Écosystème , Picea/croissance et développement , Arbres/croissance et développement , Algorithmes , Conservation des ressources naturelles/méthodes , Géographie , Mexique , Densité de population , Dynamique des populations , Arbres/classification
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE