Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Nano ; 18(24): 15651-15660, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38830824

RÉSUMÉ

Lipid bilayers possess the capacity for self-assembly due to the amphipathic nature of lipid molecules, which have both hydrophobic and hydrophilic regions. When confined, lipid bilayers exhibit astonishing versatility in their forms, adopting diverse shapes that are challenging to observe through experimental means. Exploiting this adaptability, lipid structures motivate the development of bio-inspired mechanomaterials and integrated nanobio-interfaces that could seamlessly merge with biological entities, ultimately bridging the gap between synthetic and biological systems. In this work, we demonstrate how, in numerical simulations of multivesicular bodies, a fascinating evolution unfolds from an initial semblance of order toward states of higher entropy over time. We observe dynamic rearrangements in confined vesicles that reveal unexpected limit shapes of distinct geometric patterns. We identify five structures as the basic building blocks that systematically repeat under various conditions of size and composition. Moreover, we observe more complex and less frequent shapes that emerge in confined spaces. Our results provide insights into the dynamics of multivesicular systems, offering a richer understanding of how confined lipid bodies spontaneously self-organize.


Sujet(s)
Corps multivésiculaires , Corps multivésiculaires/métabolisme , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Entropie , Interactions hydrophobes et hydrophiles
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167261, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38777099

RÉSUMÉ

PURA, also known as Pur-alpha, is an evolutionarily conserved DNA/RNA-binding protein crucial for various cellular processes, including DNA replication, transcriptional regulation, and translational control. Comprising three PUR domains, it engages with nucleic acids and has a role in protein-protein interactions. The manifestation of PURA syndrome, arising from mutations in the PURA gene, presents neurologically with developmental delay, hypotonia, and seizures. In our prior work from 2018, we highlighted the unique case of a PURA patient displaying hypoglycorrhachia, suggesting a potential association with GLUT1 dysfunction in this syndrome. In this current study, we expand the patient cohort with PURA mutations exhibiting hypoglycorrhachia and aim to unravel the molecular basis of this phenomenon. We established an in vitro model in HeLa cells to modulate PURA expression and investigated GLUT1 function and expression. Our findings indicate that PURA levels directly impact glucose uptake through the functioning of GLUT1, without influencing significantly GLUT1 expression. Moreover, our study reveals evidence for a possible physical interaction between PURA and GLUT1, demonstrated by colocalization and co-immunoprecipitation of both proteins. Computational analyses, employing molecular dynamics, further corroborates these findings, demonstrating that PURA:GLUT1 interactions are plausible, and that the stability of the complex is altered when PURA is truncated and/or mutated. In conclusion, our results suggest that PURA plays a pivotal role in driving the function of GLUT1 for glucose uptake, potentially forming a regulatory complex. Additional investigations are warranted to elucidate the precise mechanisms governing this complex and its significance in ensuring proper GLUT1 function.


Sujet(s)
Transporteur de glucose de type 1 , Femelle , Humains , Mâle , Encéphale/métabolisme , Glucose/métabolisme , Transporteur de glucose de type 1/métabolisme , Transporteur de glucose de type 1/génétique , Cellules HeLa , Mutation , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique
3.
Biochemistry ; 63(6): 815-826, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38349279

RÉSUMÉ

Membrane fusion is a crucial mechanism in a wide variety of important events in cell biology from viral infection to exocytosis. However, despite many efforts and much progress, cell-cell fusion has remained elusive to our understanding. Along the life of the fusion pore, large conformational changes take place from the initial lipid bilayer bending, passing through the hemifusion intermediates, and ending with the formation of the first nascent fusion pore. In this sense, computer simulations are an ideal technique for describing such complex lipid remodeling at the molecular level. In this work, we studied the role played by the muscle-specific membrane protein Myomerger during the formation of the fusion pore. We have conducted µs length atomistic and coarse-grained molecular dynamics, together with free-energy calculations using ad hoc collective variables. Our results show that Myomerger favors the hemifusion diaphragm-stalk transition, reduces the nucleation-expansion energy difference, and promotes the formation of nonenlarging fusion pores.


Sujet(s)
Double couche lipidique , Fusion membranaire , Double couche lipidique/métabolisme , Fusion membranaire/physiologie , Membranes/métabolisme , Simulation de dynamique moléculaire , Protéines membranaires/métabolisme , Protéines du muscle/métabolisme
4.
Mol Ther Nucleic Acids ; 33: 698-712, 2023 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-37662970

RÉSUMÉ

Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.

5.
Genet Mol Biol ; 46(2): e20230005, 2023.
Article de Anglais | MEDLINE | ID: mdl-37338301

RÉSUMÉ

Mutation landscapes and signatures have been thoroughly studied in SARS-CoV-2. Here, we analyse those patterns and link their changes to the viral replication tissue in the respiratory tract. Surprisingly, a substantial difference in those patterns is observed in samples from vaccinated patients. Hence, we propose a model to explain where those mutations could originate during the replication cycle.

6.
Front Cell Dev Biol ; 11: 1125988, 2023.
Article de Anglais | MEDLINE | ID: mdl-37287458

RÉSUMÉ

The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.

7.
ACS Chem Neurosci ; 14(11): 2049-2059, 2023 06 07.
Article de Anglais | MEDLINE | ID: mdl-37192400

RÉSUMÉ

Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.


Sujet(s)
alpha-Synucléine , Humains , alpha-Synucléine/métabolisme , Thermodynamique
8.
Microb Genom ; 9(5)2023 05.
Article de Anglais | MEDLINE | ID: mdl-37185044

RÉSUMÉ

Exposure to different mutagens leaves distinct mutational patterns that can allow inference of pathogen replication niches. We therefore investigated whether SARS-CoV-2 mutational spectra might show lineage-specific differences, dependent on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOCs). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in the Omicron variant, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both the URT and lower respiratory tract (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalizable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while mutational patterns in Alpha varied consistent with changes in transmission source as social restrictions were lifted. Mutational spectra may be a powerful tool to infer niches of established and emergent pathogens.


Sujet(s)
COVID-19 , Humains , SARS-CoV-2/génétique , Mutation , Bactéries/génétique , Poumon
9.
J Chem Theory Comput ; 18(7): 4544-4554, 2022 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-35759758

RÉSUMÉ

The fusion pore controls the release of exocytotic vesicle contents through a precise orchestration of lipids from the fusing membranes and proteins. There is a major lipid reorganization during the different stages in life of the fusion pore (membrane fusion, nucleation, and expansion) that can be scrutinized thermodynamically. In this work, using umbrella sampling simulations we describe the expansion of the fusion pore. We have calculated free energy profiles to drive a nascent, just nucleated, fusion pore to its expanded configuration. We have quantified the effects on the free energy of one and two Synaptotagmin-1 C2B domains in the cytosolic space. We show that C2B domains cumulatively reduce the cost for expansion, favoring the system to evolve toward full fusion. Finally, by conducting thousands of unbiased molecular dynamics simulations, we show that C2B domains significantly decrease the probability of kiss-and-run events.


Sujet(s)
Calcium , Exocytose , Calcium/métabolisme , Fusion membranaire
10.
Chem Sci ; 13(12): 3437-3446, 2022 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-35432859

RÉSUMÉ

Synaptotagmin-1 is a low-affinity Ca2+ sensor that triggers synchronous vesicle fusion. It contains two similar C2 domains (C2A and C2B) that cooperate in membrane binding, being the C2B domain mainly responsible for the membrane fusion process due to its polybasic patch KRLKKKKTTIKK (321-332). In this work, a master-servant mechanism between two identical C2B domains is shown to control the formation of the fusion stalk in a calcium-independent manner. Two regions in C2B are essential for the process, the well-known polybasic patch and a recently described pair of arginines (398 399). The master domain shows strong PIP2 interactions with its polybasic patch and its pair of arginines. At the same time, the servant analogously cooperates with the master to reduce the total work to form the fusion stalk. The strategic mutation (T328E, T329E) in both master and servant domains disrupts the cooperative mechanism, drastically increasing the free energy needed to induce the fusion stalk, however, with negligible effects on the master domain interactions with PIP2. These data point to a difference in the behavior of the servant domain, which is unable to sustain its PIP2 interactions neither through its polybasic patch nor through its pair of arginines, and in the end, losing its ability to assist the master in the formation of the fusion stalk.

11.
Soft Matter ; 17(36): 8314-8321, 2021 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-34550159

RÉSUMÉ

Styrene-maleic acid copolymers have become an advantageous detergent-free alternative for membrane protein isolation. Since their discovery, experimental membrane protein extraction and purification by keeping intact their lipid environment has become significantly easier. With the aim of identifying new applications of these interesting copolymers, their molecular binding and functioning mechanisms have recently become intense objects of study. In this work, we describe the use of styrene-maleic acid copolymers as an artificial tool to stabilize the fusion pore. We show that when these copolymers circumscribe the water channel that defines the fusion pore, they keep it from shrinking and closing. We describe how only intra-organelle copolymers have stabilizing capabilities while extra-organelle ones have negligible or even contrary effects on the fusion pore life-time.


Sujet(s)
Double couche lipidique , Maléates , Organites , Polymères , Polystyrènes
12.
Biosystems ; 209: 104505, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34403719

RÉSUMÉ

The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.


Sujet(s)
Membrane cellulaire/métabolisme , Cholestérol/métabolisme , Double couche lipidique/métabolisme , Simulation de dynamique moléculaire , Antigène CD81/métabolisme , Algorithmes , Membrane cellulaire/composition chimique , Cholestérol/composition chimique , Humains , Double couche lipidique/composition chimique , Microdomaines membranaires/composition chimique , Microdomaines membranaires/métabolisme , Phosphatidylcholines/composition chimique , Phosphatidylcholines/métabolisme , Liaison aux protéines , Conformation des protéines , Antigène CD81/composition chimique , Thermodynamique
13.
J Chem Theory Comput ; 16(12): 7840-7851, 2020 Dec 08.
Article de Anglais | MEDLINE | ID: mdl-33166466

RÉSUMÉ

Fusion pores serve as an effective mechanism to connect intracellular organelles and release vesicle contents during exocytosis. A complex lipid rearrangement takes place as membranes approximate, bend, fuse, and establish a traversing water channel to define the fusion pore, linking initially isolated chambers. Thermodynamically, the process is unfavorable and thought to be mediated by specialized proteins. In this work, we have developed a reaction coordinate to induce fusion pores from initially flat and parallel lipid bilayers and we have used it to describe the effects of the synaptotagmin-1 C2B domain during the process. We have obtained free-energy profiles of the whole lipid reorganization in biologically realistic membranes, going from planar and parallel bilayers through stalk hemifusion to water channel formation. Our results point to a lysine-rich polybasic region on synaptotagmin-1 C2B as the key to lipid reorganization control through the formation of phosphatidylinositol bisphosphate clusters that stabilize the fusion pore.


Sujet(s)
Double couche lipidique/composition chimique , Phosphatidylinositol diphosphate-4,5/composition chimique , Synaptotagmine I/composition chimique , Humains , Domaines protéiques , Stabilité protéique , Thermodynamique
14.
Phys Chem Chem Phys ; 22(9): 5255-5263, 2020 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-32091512

RÉSUMÉ

Currently, membrane curvature is understood as an active mechanism to control cells spatial organization and activity. Protein processes involved in sensing and generating curvature are therefore of major interest. In this work, we have studied α-synuclein interactions with a model lipid bilayer, inducing curvature in a controlled manner and describing protein responses at molecular level. We show that the intrinsically disordered region of α-synuclein binds to the bilayer as an acknowledgment to the induced curvature, a mechanism used by the interacting protein-membrane assembly to relieve free energy. We have calculated free energies for bending the bilayer with α-synuclein adsorbed on the surface and we have established the crucial role of the intrinsically disordered region, suggesting that a dynamic order/disorder interplay takes place as the bilayer reorganizes to bend.


Sujet(s)
Double couche lipidique/composition chimique , alpha-Synucléine/composition chimique , Double couche lipidique/métabolisme , Modèles théoriques , Liaison aux protéines , Propriétés de surface , Thermodynamique , alpha-Synucléine/métabolisme
15.
Mol Hum Reprod ; 25(7): 344-358, 2019 07 01.
Article de Anglais | MEDLINE | ID: mdl-31194868

RÉSUMÉ

N-ethylmaleimide-sensitive factor (NSF) disassembles fusion-incompetent cis soluble-NSF attachment protein receptor (SNARE) complexes making monomeric SNAREs available for subsequent trans pairing and fusion. In most cells the activity of NSF is constitutive, but in Jurkat cells and sperm it is repressed by tyrosine phosphorylation; the phosphomimetic mutant NSF-Y83E inhibits secretion in the former. The questions addressed here are if and how the NSF mutant influences the configuration of the SNARE complex. Our model is human sperm, where the initiation of exocytosis (acrosome reaction (AR)) de-represses the activity of NSF through protein tyrosine phosphatase 1B (PTP1B)-mediated dephosphorylation. We developed a fluorescence microscopy-based method to show that capacitation increased, and challenging with an AR inducer decreased, the number of cells with tyrosine-phosphorylated PTP1B substrates in the acrosomal domain. Results from bioinformatic and biochemical approaches using purified recombinant proteins revealed that NSF-Y83E bound PTP1B and thereupon inhibited its catalytic activity. Mutant NSF introduced into streptolysin O-permeabilized sperm impaired cis SNARE complex disassembly, blocking the AR; subsequent addition of PTP1B rescued exocytosis. We propose that NSF-Y83E prevents endogenous PTP1B from dephosphorylating sperm NSF, thus maintaining NSF's activity in a repressed mode and the SNARE complex unable to dissociate. The contribution of this paper to the sperm biology field is the detection of PTP1B substrates, one of them likely being NSF, whose tyrosine phosphorylation status varies during capacitation and the AR. The contribution of this paper to the membrane traffic field is to have generated direct evidence that explains the dominant-negative role of the phosphomimetic mutant NSF-Y83E.


Sujet(s)
N-Ethylmaleimide-sensitive factors/métabolisme , Phosphorylation/physiologie , Protéines SNARE/métabolisme , Réaction acrosomique/physiologie , Technique de Western , Catalyse , Biologie informatique , Exocytose/physiologie , Technique d'immunofluorescence indirecte , Humains , Mâle , Plasmides , Liaison aux protéines , Protein Tyrosine Phosphatase, Non-Receptor Type 1/métabolisme , Spermatozoïdes/métabolisme , Tyrosine/métabolisme
16.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 612-622, 2019 04.
Article de Anglais | MEDLINE | ID: mdl-30599141

RÉSUMÉ

Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.


Sujet(s)
Réaction acrosomique , Protéines adaptatrices de la transduction du signal/métabolisme , Facteurs d'échange de nucléotides guanyliques/métabolisme , Protéines de tissu nerveux/métabolisme , Spermatozoïdes/métabolisme , Protéines du transport vésiculaire/métabolisme , Protéines rab27 liant le GTP/métabolisme , Protéine G rab3A/métabolisme , Acrosome/métabolisme , Exocytose , Humains , Mâle , Protéine G rab3A/composition chimique ,
17.
Phys Chem Chem Phys ; 21(1): 268-274, 2018 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-30520484

RÉSUMÉ

Are the dimerization of transmembrane (TM) domains and the reorganization of the lipid bilayer two independent events? Does one event induce or interfere with the other? In this work, we have performed well-tempered metadynamics simulations to calculate the free energy cost to bend a model ternary lipid bilayer in the presence of a TM peptide in its dimer form. We have compared this result with the free energy cost needed to bend a bilayer-only system. Additionally, we have calculated the free energy cost to form a model TM peptide dimer quantitatively describing how lipids reorganize themselves in response to the increase of the membrane curvature and to the lipid-peptide interactions. Our results indicate that the formation of the peptide dimer inside the bilayer increases the cost of the membrane bending due to the spontaneous clustering of cholesterol molecules.


Sujet(s)
Cholestérol/composition chimique , Double couche lipidique/composition chimique , Modèles biologiques , Domaines protéiques/physiologie , Dimérisation , Métabolisme énergétique , Simulation de dynamique moléculaire
18.
Front Cell Dev Biol ; 6: 33, 2018.
Article de Anglais | MEDLINE | ID: mdl-29670879

RÉSUMÉ

Human Adipose-derived mesenchymal stem/stromal cells (hASCs) are of great interest because of their potential for therapeutic approaches. The method described here covers every single step necessary for hASCs isolation from subcutaneous abdominal adipose tissue, multicolor phenotyping by flow cytometry, and quantitative determination of adipogenic differentiation status by means of lipid droplets (LDs) accumulation, and Western blot analysis. Moreover, to simultaneously analyze both LDs accumulation and cellular proteins localization by fluorescence microscopy, we combined Oil Red O (ORO) staining with immunofluorescence detection. For LDs quantification we wrote a program for automatic ORO-stained digital image processing implemented in Octave, a freely available software package. Our method is based on the use of the traditional low cost neutral lipids dye ORO, which can be imaged both by bright-field and fluorescence microscopy. The utilization of ORO instead of other more expensive lipid-specific dyes, together with the fact that the whole method has been designed employing cost-effective culture reagents (standard culture medium and serum), makes it affordable for tight-budget research laboratories. These may be replaced, if necessary or desired, by defined xeno-free reagents for clinical research and applications.

19.
J Chem Theory Comput ; 14(4): 2240-2245, 2018 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-29506389

RÉSUMÉ

Curvature-related processes are of major importance during protein-membrane interactions. The illusive simplicity of membrane reshaping masks a complex molecular process crucial for a wide range of biological functions like fusion, endo- and exocytosis, cell division, cytokinesis, and autophagy. To date, no functional expression of a reaction coordinate capable of biasing molecular dynamics simulations to produce membrane curvature has been reported. This represents a major drawback given that the adequate identification of proper collective variables to enhance sampling is fundamental for restrained dynamics techniques. In this work, we present a closed-form equation of a collective variable that induces bending in lipid bilayers in a controlled manner, allowing for straightforward calculation of free energy landscapes of important curvature-related events, using standard methods such as umbrella sampling and metadynamics. As a direct application of the collective variable, we calculate the bending free energies of a ternary lipid bilayer in the presence and the absence of a Bin/Amphiphysin/Rvs domain with an N-terminal amphipathic helix (N-BAR), a well-known peripheral membrane protein that induces curvature.


Sujet(s)
Entropie , Double couche lipidique/composition chimique , Simulation de dynamique moléculaire , Autophagie , Division cellulaire , Modèles moléculaires , Protéines/composition chimique
20.
Sci Rep ; 7: 46114, 2017 04 07.
Article de Anglais | MEDLINE | ID: mdl-28387381

RÉSUMÉ

Twenty years ago, a novel concept in protein structural biology was discovered: the intrinsically disordered regions (IDRs). These regions remain largely unstructured under native conditions and the more are studied, more properties are attributed to them. Possibly, one of the most important is their ability to conform a new type of protein-protein interaction. Besides the classical domain-to-domain interactions, IDRs follow a 'fly-casting' model including 'induced folding'. Unfortunately, it is only possible to experimentally explore initial and final states. However, the complete movie of conformational changes of protein regions and their characterization can be addressed by in silico experiments. Here, we simulate the binding of two proteins to describe how the phosphorylation of a single residue modulates the entire process. 14-3-3 protein family is considered a master regulator of phosphorylated proteins and from a modern point-of-view, protein phosphorylation is a three component system, with writers (kinases), erasers (phosphatases) and readers. This later biological role is attributed to the 14-3-3 protein family. Our molecular dynamics results show that phosphorylation of the key residue Thr31 in a partner of 14-3-3, the aralkylamine N-acetyltransferase, releases the fly-casting mechanism during binding. On the other hand, the non-phosphorylation of the same residue traps the proteins, systematically and repeatedly driving the simulations into wrong protein-protein conformations.


Sujet(s)
Protéines 14-3-3/métabolisme , Arylalkylamine N-Acetyltransferase/métabolisme , Fluorescence , Simulation de dynamique moléculaire , Phosphorylation
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...