Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
1.
Med Sci (Paris) ; 39 Hors série n° 1: 32-36, 2023 Nov.
Article de Français | MEDLINE | ID: mdl-37975768

RÉSUMÉ

Myotubular myopathy is a rare disease of genetic origin characterized by significant muscle weakness leading to respiratory disorders and for which no treatment exists today. In this paper, we show that inhibition of the activity of the enzyme PI3KC2ß prevents the development of this myopathy in a mouse model of the disease, thus identifying a therapeutic target to treat myotubular myopathy in humans.


Title: Une cible thérapeutique prometteuse dans la myopathie myotubulaire. Abstract: La myopathie myotubulaire est une maladie rare d'origine génétique caractérisée par une importante faiblesse musculaire entraînant des troubles respiratoires et pour laquelle aucun traitement n'existe aujourd'hui. Dans cet article, nous montrons que l'inhibition de l'activité de l'enzyme PI3KC2ß prévient le développement de cette myopathie dans un modèle murin de la maladie, identifiant ainsi une cible thérapeutique pour traiter la myopathie myotubulaire chez l'homme.


Sujet(s)
Myopathies congénitales structurales , Animaux , Souris , Modèles animaux de maladie humaine , Myopathies congénitales structurales/génétique , Myopathies congénitales structurales/thérapie , Protein Tyrosine Phosphatases, Non-Receptor/génétique
2.
JCI Insight ; 8(9)2023 05 08.
Article de Anglais | MEDLINE | ID: mdl-36943412

RÉSUMÉ

Phosphoinositides (PIs) are membrane lipids that regulate signal transduction and vesicular trafficking. X-linked centronuclear myopathy (XLCNM), also called myotubular myopathy, results from loss-of-function mutations in the MTM1 gene, which encodes the myotubularin phosphatidylinositol 3-phosphate (PtdIns3P) lipid phosphatase. No therapy for this disease is currently available. Previous studies showed that loss of expression of the class II phosphoinositide 3-kinase (PI3K) PI3KC2ß (PI3KC2B) protein improved the phenotypes of an XLCNM mouse model. PI3Ks are well known to have extensive scaffolding functions and the importance of the catalytic activity of this PI3K for rescue remains unclear. Here, using PI3KC2ß kinase-dead mice, we show that the selective inactivation of PI3KC2ß kinase activity is sufficient to fully prevent muscle atrophy and weakness, histopathology, and sarcomere and triad disorganization in Mtm1-knockout mice. This rescue correlates with normalization of PtdIns3P level and mTORC1 activity, a key regulator of protein synthesis and autophagy. Conversely, lack of PI3KC2ß kinase activity did not rescue the histopathology of the BIN1 autosomal CNM mouse model. Overall, these findings support the development of specific PI3KC2ß kinase inhibitors to cure myotubular myopathy.


Sujet(s)
Myopathies congénitales structurales , Phosphatidylinositol 3-kinases , Animaux , Souris , Phosphatidylinositol 3-kinases/génétique , Phosphatidyl inositols , Mutation , Souris knockout , Myopathies congénitales structurales/génétique , Myopathies congénitales structurales/anatomopathologie
3.
Nat Commun ; 13(1): 6849, 2022 11 11.
Article de Anglais | MEDLINE | ID: mdl-36369230

RÉSUMÉ

Dynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission. In vivo, overexpressing the ubiquitous dynamin 2 isoform correlates with severe forms of centronuclear myopathy, while overexpressing the muscle-specific isoform leads to hallmarks seen in milder cases of the disease. Previous mouse studies suggested that reduction of the total dynamin 2 pool could be therapeutic for centronuclear myopathies. Here, dynamin 2 splice switching from muscle-specific to ubiquitous dynamin 2 aggravated the phenotype of a severe X-linked form of centronuclear myopathy caused by loss-of-function of the MTM1 phosphatase, supporting the importance of targeting the ubiquitous isoform for efficient therapy in muscle. Our results highlight that the ubiquitous and not the muscle-specific dynamin 2 isoform is the main modifier contributing to centronuclear myopathy pathology.


Sujet(s)
Dynamine-II , Myopathies congénitales structurales , Animaux , Souris , Dynamine-II/génétique , Muscles squelettiques/anatomopathologie , Mutation , Myopathies congénitales structurales/génétique , Myopathies congénitales structurales/anatomopathologie , Phénotype , Isoformes de protéines/génétique
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article de Anglais | MEDLINE | ID: mdl-35217605

RÉSUMÉ

The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2RW/+ and Dnm2RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2RW/+ mice and rescued the perinatal lethality and survival of Dnm2RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Dynamine-II/physiologie , Amyotrophie/physiopathologie , Maladies musculaires/anatomopathologie , Protéines nucléaires/métabolisme , Protéines suppresseurs de tumeurs/métabolisme , Animaux , Dynamine-II/génétique , Dynamine-II/métabolisme , Humains , Souris , Souris knockout , Liaison aux protéines
5.
Mol Ther ; 29(8): 2514-2534, 2021 08 04.
Article de Anglais | MEDLINE | ID: mdl-33940157

RÉSUMÉ

Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.


Sujet(s)
Analyse de profil d'expression de gènes/méthodes , Myopathies congénitales structurales/traitement médicamenteux , Oligonucléotides antisens/usage thérapeutique , Protein Tyrosine Phosphatases, Non-Receptor/génétique , Protéomique/méthodes , Tamoxifène/usage thérapeutique , Protéines adaptatrices de la transduction du signal/antagonistes et inhibiteurs , Animaux , Modèles animaux de maladie humaine , Dynamine-II/antagonistes et inhibiteurs , Humains , Études longitudinales , Spectrométrie de masse , Souris , Myopathies congénitales structurales/génétique , Myopathies congénitales structurales/métabolisme , Protéines de tissu nerveux/antagonistes et inhibiteurs , Analyse de séquence d'ARN , Protéines suppresseurs de tumeurs/antagonistes et inhibiteurs
6.
JCI Insight ; 5(18)2020 09 17.
Article de Anglais | MEDLINE | ID: mdl-32809972

RÉSUMÉ

Classical dynamins are large GTPases regulating membrane and cytoskeleton dynamics, and they are linked to different pathological conditions ranging from neuromuscular diseases to encephalopathy and cancer. Dominant dynamin 2 (DNM2) mutations lead to either mild adult onset or severe autosomal dominant centronuclear myopathy (ADCNM). Our objectives were to better understand the pathomechanism of severe ADCNM and test a potential therapy. Here, we created the Dnm2SL/+ mouse line harboring the common S619L mutation found in patients with severe ADCNM and impairing the conformational switch regulating dynamin self-assembly and membrane remodeling. The Dnm2SL/+ mouse faithfully reproduces severe ADCNM hallmarks with early impaired muscle function and force, together with myofiber hypotrophy. It revealed swollen mitochondria lacking cristae as the main ultrastructural defect and potential cause of the disease. Patient analysis confirmed this structural hallmark. In addition, DNM2 reduction with antisense oligonucleotides after disease onset efficiently reverted locomotor and force defects after only 3 weeks of treatment. Most histological defects including mitochondria alteration were partially or fully rescued. Overall, this study highlights an efficient approach to revert the severe form of dynamin-related centronuclear myopathy. These data also reveal that the dynamin conformational switch is key for muscle function and should be targeted for future therapeutic developments.


Sujet(s)
Dynamine-II/physiologie , Mitochondries/anatomopathologie , Muscles squelettiques/anatomopathologie , Mutation , Myopathies congénitales structurales/prévention et contrôle , Oligonucléotides antisens/pharmacologie , Animaux , Dynamine-II/antagonistes et inhibiteurs , Femelle , Mâle , Souris , Souris de lignée BALB C , Souris de lignée C57BL , Souris knockout , Mitochondries/métabolisme , Muscles squelettiques/métabolisme , Myopathies congénitales structurales/étiologie , Myopathies congénitales structurales/métabolisme , Myopathies congénitales structurales/anatomopathologie
7.
Hum Mol Genet ; 28(24): 4067-4077, 2019 12 15.
Article de Anglais | MEDLINE | ID: mdl-31628461

RÉSUMÉ

Dynamin 2 (DNM2) is a ubiquitously expressed GTPase implicated in many cellular functions such as membrane trafficking and cytoskeleton regulation. Dominant mutations in DNM2 result in tissue-specific diseases affecting peripheral nerves (Charcot-Marie-Tooth neuropathy, CMT) or skeletal muscles (centronuclear myopathy, CNM). However, the reason for this tissue specificity is unknown, and it remains unclear if these diseases share a common pathomechanism. To compare the disease pathophysiological mechanisms in skeletal muscle, we exogenously expressed wild-type DNM2 (WT-DNM2), the DNM2-CMT mutation K562E or DNM2-CNM mutations R465W and S619L causing adult and neonatal forms, respectively, by intramuscular adeno-associated virus (AAV) injections. All muscles expressing exogenous WT-DNM2 and CNM or CMT mutations exhibited reduced muscle force. However, only expression of CNM mutations and WT-DNM2 correlated with CNM-like histopathological hallmarks of nuclei centralization and reduced fiber size. The extent of alterations correlated with clinical severity in patients. Ultrastructural and immunofluorescence analyses highlighted defects of the triads, mitochondria and costameres as major causes of the CNM phenotype. Despite the reduction in force upon expression of the DNM2-CMT mutation, muscle histology and ultrastructure were almost normal. However, the neuromuscular junction was affected in all DNM2-injected muscles, with the DNM2-CMT mutation inducing the most severe alterations, potentially explaining the reduction in force observed with this mutant. In conclusion, expression of WT and CNM mutants recreate a CNM-like phenotype, suggesting CNM mutations are gain-of-function. Histological, ultrastructural and molecular analyses pointed to key pathways uncovering the different pathomechanisms involved in centronuclear myopathy or Charcot-Marie-Tooth neuropathy linked to DNM2 mutations.


Sujet(s)
Maladie de Charcot-Marie-Tooth/génétique , Dynamine-II/génétique , Myopathies congénitales structurales/génétique , Animaux , Maladie de Charcot-Marie-Tooth/métabolisme , Dynamine-II/métabolisme , Technique d'immunofluorescence , Cellules HEK293 , Humains , Mâle , Souris , Souris de souche-129 , Mitochondries/métabolisme , Muscles squelettiques/métabolisme , Muscles squelettiques/physiopathologie , Mutation , Myopathies congénitales structurales/métabolisme , Jonction neuromusculaire/génétique , Jonction neuromusculaire/métabolisme , Jonction neuromusculaire/physiopathologie , Nerfs périphériques/métabolisme , Nerfs périphériques/physiopathologie , Phénotype
8.
Nat Commun ; 9(1): 4848, 2018 11 19.
Article de Anglais | MEDLINE | ID: mdl-30451843

RÉSUMÉ

X-linked myotubular myopathy (XLMTM, also known as XLCNM) is a severe congenital muscular disorder due to mutations in the myotubularin gene, MTM1. It is characterized by generalized hypotonia, leading to neonatal death of most patients. No specific treatment exists. Here, we show that tamoxifen, a well-known drug used against breast cancer, rescues the phenotype of Mtm1-deficient mice. Tamoxifen increases lifespan several-fold while improving overall motor function and preventing disease progression including lower limb paralysis. Tamoxifen corrects functional, histological and molecular hallmarks of XLMTM, with improved force output, myonuclei positioning, myofibrillar structure, triad number, and excitation-contraction coupling. Tamoxifen normalizes the expression level of the XLMTM disease modifiers DNM2 and PI3KC2B, likely contributing to the phenotypic rescue. Our findings demonstrate that tamoxifen is a promising candidate for clinical evaluation in XLMTM patients.


Sujet(s)
Activité motrice/effets des médicaments et des substances chimiques , Muscles squelettiques/effets des médicaments et des substances chimiques , Myopathies congénitales structurales/traitement médicamenteux , Agents protecteurs/pharmacologie , Protein Tyrosine Phosphatases, Non-Receptor/génétique , Tamoxifène/pharmacologie , Animaux , Phosphatidylinositol 3-kinases de classe II/génétique , Phosphatidylinositol 3-kinases de classe II/métabolisme , Modèles animaux de maladie humaine , Évolution de la maladie , Dynamine-II/génétique , Dynamine-II/métabolisme , Stimulation électrique , Couplage excitation-contraction/effets des médicaments et des substances chimiques , Femelle , Expression des gènes/effets des médicaments et des substances chimiques , Gènes létaux , Humains , Longévité/effets des médicaments et des substances chimiques , Mâle , Souris , Souris knockout , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Myofibrilles/effets des médicaments et des substances chimiques , Myofibrilles/métabolisme , Myofibrilles/ultrastructure , Myopathies congénitales structurales/génétique , Myopathies congénitales structurales/métabolisme , Myopathies congénitales structurales/anatomopathologie , Protein Tyrosine Phosphatases, Non-Receptor/déficit
9.
Cell Rep ; 18(2): 443-453, 2017 01 10.
Article de Anglais | MEDLINE | ID: mdl-28076788

RÉSUMÉ

One of the key research areas surrounding HIV-1 concerns the regulation of the fusion event that occurs between the virus particle and the host cell during entry. Even if it is universally accepted that the large GTPase dynamin-2 is important during HIV-1 entry, its exact role during the first steps of HIV-1 infection is not well characterized. Here, we have utilized a multidisciplinary approach to study the DNM2 role during fusion of HIV-1 in primary resting CD4 T and TZM-bl cells. We have combined advanced light microscopy and functional cell-based assays to experimentally assess the role of dynamin-2 during these processes. Overall, our data suggest that dynamin-2, as a tetramer, might help to establish hemi-fusion and stabilizes the pore during HIV-1 fusion.


Sujet(s)
Dynamine-II/composition chimique , Dynamine-II/métabolisme , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , Fusion membranaire , Multimérisation de protéines , Lymphocytes T CD4+/immunologie , Numération cellulaire , Fusion cellulaire , Transfert d'énergie par résonance de fluorescence , Gènes rapporteurs , Cellules HEK293 , Humains , Hydrazones/métabolisme , Cinétique , Modèles biologiques , Virion/métabolisme , Pénétration virale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE