Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Rep ; 14(1): 18586, 2024 08 10.
Article de Anglais | MEDLINE | ID: mdl-39127716

RÉSUMÉ

Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.


Sujet(s)
Astrocytes , Altération de l'ADN , ADN mitochondrial , Mitochondries , Astrocytes/métabolisme , Animaux , ADN mitochondrial/génétique , ADN mitochondrial/métabolisme , Souris , Mitochondries/métabolisme , Dependovirus/génétique , Calcium/métabolisme , Encéphale/métabolisme , Mâle , Signalisation calcique , Souris de lignée C57BL , Dynamique mitochondriale , Gyrus denté/métabolisme
2.
bioRxiv ; 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38853966

RÉSUMÉ

Astrocytes use Ca 2+ signals to regulate multiple aspects of normal and pathological brain function. Astrocytes display context-specific diversity in their functions, and in their response to noxious stimuli between brain regions. Indeed, astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on their ATP generation and Ca 2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca 2+ signaling in astrocytes, the extent of this regulation into the rich diversity of astrocytes in different brain regions remains largely unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for proper astrocyte function, however, few insights into possible diverse responses to this noxious stimulus from astrocytes in different brain areas were reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI, which expresses the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two distinct brain regions, the dorsolateral striatum, and the hippocampal dentate gyrus, and we show that Mito-PstI can induce astrocytic mtDNA loss in vivo , but with remarkable brain-region-dependent differences on mitochondrial dynamics, spontaneous Ca 2+ fluxes and astrocytic as well as microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca 2+ signaling in a brain-region-selective manner.

3.
PLoS One ; 17(4): e0266509, 2022.
Article de Anglais | MEDLINE | ID: mdl-35377919

RÉSUMÉ

Responses to early life adversity differ greatly across individuals. Elucidating which factors underlie this variation can help us better understand how to improve health trajectories. Here we used a case:control study of refugee and non-refugee youth, differentially exposed to war-related trauma, to investigate the effects of genetics and psychosocial environment on response to trauma. We investigated genetic variants in two genes (serotonin transporter, 5-HTT, and catechol-O-methyltransferase, COMT) that have been implicated in response to trauma. We collected buccal samples and survey data from 417 Syrian refugee and 306 Jordanian non-refugee youth who were enrolled in a randomized controlled trial to evaluate a mental health-focused intervention. Measures of lifetime trauma exposure, resilience, and six mental health and psychosocial stress outcomes were collected at three time points: baseline, ~13 weeks, and ~48 weeks. We used multilevel models to identify gene x environment (GxE) interactions and direct effects of the genetic variants in association with the six outcome measures over time. We did not identify any interactions with trauma exposure, but we did identify GxE interactions with both genes and resilience; 1) individuals with high expression (HE) variants of 5-HTTLPR and high levels of resilience had the lowest levels of perceived stress and 2) individuals homozygous for the Val variant of COMT with high levels of resilience showed stable levels of post-traumatic stress symptoms. We also identified a direct protective effect of 5-HTTLPR HE homozygotes on perceived insecurity. Our results point to novel interactions between the protective effects of genetic variants and resilience, lending support to ideas of differential susceptibility and altered stress reactivity in a cohort of war-affected adolescents.


Sujet(s)
Catechol O-methyltransferase , Transporteurs de la sérotonine , Troubles de stress post-traumatique , Adolescent , Catechol O-methyltransferase/génétique , Humains , Études longitudinales , Transporteurs de la sérotonine/génétique , Troubles de stress post-traumatique/génétique , Troubles de stress post-traumatique/psychologie , Stress psychologique/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE