Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 269
Filtrer
1.
Res Sq ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39011113

RÉSUMÉ

Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia with no specific mechanism-based treatment. We used Mendelian randomization to combine a unique cerebrospinal fluid (CSF) and plasma pQTL resource with the latest European-ancestry GWAS of MRI-markers of cSVD (white matter hyperintensities, perivascular spaces). We describe a new biological fingerprint of 49 protein-cSVD associations, predominantly in the CSF. We implemented a multipronged follow-up, across fluids, platforms, and ancestries (Europeans and East-Asian), including testing associations of direct plasma protein measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF and plasma, with 24/4 proteins identified in CSF/plasma only. cSVD-proteins were enriched in extracellular matrix and immune response pathways, and in genes enriched in microglia and specific microglial states (integration with single-nucleus RNA sequencing). Immune-related proteins were associated with MRI-cSVD already at age twenty. Half of cSVD-proteins were associated with stroke, dementia, or both, and seven cSVD-proteins are targets for known drugs (used for other indications in directions compatible with beneficial therapeutic effects. This first cSVD proteogenomic signature opens new avenues for biomarker and therapeutic developments.

2.
J Neurooncol ; 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39002029

RÉSUMÉ

PURPOSE: Although meningiomas are the most common primary intracranial tumors, their genetic etiologies have not been fully elucidated. To date, only two genome-wide association studies (GWASs) have focused on European ancestries, despite ethnic differences in the incidence of meningiomas. The aim of this study was to conduct the first GWAS of Japanese patients with meningiomas to identify the SNPs associated with meningioma susceptibility. METHODS: In this multicenter prospective case-control study, we studied 401 Japanese patients with meningioma admitted in five institutions in Japan, and 50,876 control participants of Japanese ancestry enrolled in Biobank Japan. RESULTS: The quality control process yielded 536,319 variants and imputation resulted in 8,224,735 variants on the autosomes and 224,820 variants on the X chromosomes. This GWAS eventually revealed no genetic variants with genome-wide significance (P < 5 × 10 - 8) and observed no significant association in the previously reported risk variants rs11012732 and rs2686876 due to low minor allele frequency in the Japanese population. CONCLUSION: This is the first GWAS of meningiomas in East Asian populations and is expected to contribute to the development of GWAS research for meningiomas.

3.
Cell Genom ; : 100625, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39084228

RÉSUMÉ

Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies between sexes suggested the underlying impact of escape on the genotype-phenotype association. Overall, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and tissues.

4.
Nat Commun ; 15(1): 5744, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39019884

RÉSUMÉ

Recurrent pregnancy loss (RPL) is a major reproductive health issue with multifactorial causes, affecting 2.6% of all pregnancies worldwide. Nearly half of the RPL cases lack clinically identifiable causes (e.g., antiphospholipid syndrome, uterine anomalies, and parental chromosomal abnormalities), referred to as unexplained RPL (uRPL). Here, we perform a genome-wide association study focusing on uRPL in 1,728 cases and 24,315 female controls of Japanese ancestry. We detect significant associations in the major histocompatibility complex (MHC) region at 6p21 (lead variant=rs9263738; P = 1.4 × 10-10; odds ratio [OR] = 1.51 [95% CI: 1.33-1.72]; risk allele frequency = 0.871). The MHC associations are fine-mapped to the classical HLA alleles, HLA-C*12:02, HLA-B*52:01, and HLA-DRB1*15:02 (P = 1.1 × 10-10, 1.5 × 10-10, and 1.2 × 10-9, respectively), which constitute a population-specific common long-range haplotype with a protective effect (P = 2.8 × 10-10; OR = 0.65 [95% CI: 0.57-0.75]; haplotype frequency=0.108). Genome-wide copy-number variation (CNV) calling demonstrates rare predicted loss-of-function (pLoF) variants of the cadherin-11 gene (CDH11) conferring the risk of uRPL (P = 1.3 × 10-4; OR = 3.29 [95% CI: 1.78-5.76]). Our study highlights the importance of reproductive immunology and rare variants in the uRPL etiology.


Sujet(s)
Avortements à répétition , Prédisposition génétique à une maladie , Étude d'association pangénomique , Humains , Femelle , Avortements à répétition/génétique , Grossesse , Fréquence d'allèle , Chaines HLA-DRB1/génétique , Polymorphisme de nucléotide simple , Adulte , Allèles , Études cas-témoins , Antigènes HLA-C/génétique , Complexe majeur d'histocompatibilité/génétique , Chromosomes humains de la paire 6/génétique , Variations de nombre de copies de segment d'ADN , Haplotypes , Japon/épidémiologie , Antigènes HLA-B/génétique , Variation génétique
5.
Reprod Med Biol ; 23(1): e12595, 2024.
Article de Anglais | MEDLINE | ID: mdl-38915913

RÉSUMÉ

Purpose: The average fatherhood age has been consistently increasing in developed countries. Aging has been identified as a risk factor for male infertility. However, its impact on various mechanisms remains unclear. This study focused on the KEAP1-NRF2 oxidative stress response system, by investigating the relationship between the KEAP1-NRF2 system and age-related changes in spermatogenesis. Methods: For examination of age-related changes, we used 10-, 30-, 60-, and 90-week-old mice to compare sperm count, sperm motility, and protein expression. For assessment of Keap1 inhibition, 85-week-old C57BL/6J mice were randomly assigned to the following groups: control and bardoxolone methyl (KEAP1 inhibitor). Whole-exome sequencing of a Japanese cohort of patients with non-obstructive azoospermia was performed for evaluating. Results: Sperm count decreased significantly with aging. Oxidative stress and KEAP1 expression in the testes were elevated. Inhibition of KEAP1 in aging mice significantly increased sperm count compared with that in the control group. In the human study, the frequency of a missense-type SNP (rs181294188) causing changes in NFE2L2 (NRF2) activity was significantly higher in patients with non-obstructive azoospermia than in healthy control group. Conclusions: The KEAP1-NRF2 system, an oxidative stress response system, is associated with age-related spermatogenesis dysfunction.

6.
J Atheroscler Thromb ; 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38910120

RÉSUMÉ

AIM: This study examined the relationship between genetic risk, healthy lifestyle, and risk of developing diabetes. METHODS: This prospective cohort study included 11,014 diabetes-free individuals ≥ 20 years old from the Tohoku Medical Megabank Community-based cohort study. Lifestyle scores, including the body mass index, smoking, physical activity, and gamma-glutamyl transferase (marker of alcohol consumption), were assigned, and participants were categorized into ideal, intermediate, and poor lifestyles. A polygenic risk score (PRS) was constructed based on the type 2 diabetes loci from the BioBank Japan study. A multiple logistic regression model was used to estimate the association between genetic risk, healthy lifestyle, and diabetes incidence and to calculate the area under the receiver operating characteristic curve (AUROC). RESULT: Of the 11,014 adults included (67.8% women; mean age [standard deviation], 59.1 [11.3] years old), 297 (2.7%) developed diabetes during a mean 4.3 (0.8) years of follow-up. Genetic and lifestyle score is independently associated with the development of diabetes. Compared with the low genetic risk and ideal lifestyle groups, the odds ratio was 3.31 for the low genetic risk and poor lifestyle group. When the PRS was integrated into a model including the lifestyle and family history, the AUROC significantly improved to 0.719 (95% confidence interval [95% CI]: 0.692-0.747) compared to a model including only the lifestyle and family history (0.703 [95% CI, 0.674-0.732]). CONCLUSION: Our findings indicate that adherence to a healthy lifestyle is important for preventing diabetes, regardless of genetic risk. In addition, genetic risk might provide information beyond lifestyle and family history to stratify individuals at high risk of developing diabetes.

7.
Food Sci Nutr ; 12(6): 4342-4352, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38873438

RÉSUMÉ

Rhamnan sulphate (RS) is a sulphated polysaccharide found in green algae such as Monostroma nitidum that exhibits various biological functions, including anticoagulant, antitumour, antiviral, and anti-obesity properties. In our previous clinical trial, we demonstrated that RS intake improves constipation. However, no specific bacteria showed a significant (p < .05) change. Notably, these results were obtained after a short RS inoculation period of only 2 weeks. In the present study, to evaluate the long-term effects of RS on the gut microbiota, we orally administered RS to BALB/c mice for 11 weeks, analyzed their blood biochemical data, and performed 16s rRNA-sequencing. Oral administration of RS increased body weight with increased food intake, whereas plasma total cholesterol and fasting plasma glucose levels decreased. RS-fed mice showed lower fasting insulin levels (p < .1) and decreased homeostatic model assessment for insulin resistance (HOMA-IR, p < .0001), suggesting that RS improved insulin resistance. In the feces of mice, the amounts of acetic and propionic acids increased. In the gut microbiota, predictive metagenomic profiling using the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) revealed functional alterations in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways in RS-fed mice. Corresponding to the blood glucose-lowering effect, the glycolysis and tricarboxylic acid (TCA) cycle pathways were activated. In addition, the Firmicutes/Bacteroides (F/B) ratio, which may be associated with various health outcomes, was also reduced. These results suggest that the blood glucose-lowering effect, improvement in insulin resistance, and lipid-lowering effect of RS may be due to changes in the intestinal microbiota.

9.
Sci Rep ; 14(1): 8871, 2024 04 17.
Article de Anglais | MEDLINE | ID: mdl-38632277

RÉSUMÉ

HOIL-1L deficiency was recently reported to be one of the causes of myopathy and dilated cardiomyopathy (DCM). However, the mechanisms by which myopathy and DCM develop have not been clearly elucidated. Here, we sought to elucidate these mechanisms using the murine myoblast cell line C2C12 and disease-specific human induced pluripotent stem cells (hiPSCs). Myotubes differentiated from HOIL-1L-KO C2C12 cells exhibited deteriorated differentiation and mitotic cell accumulation. CMs differentiated from patient-derived hiPSCs had an abnormal morphology with a larger size and were excessively multinucleated compared with CMs differentiated from control hiPSCs. Further analysis of hiPSC-derived CMs showed that HOIL-1L deficiency caused cell cycle alteration and mitotic cell accumulation. These results demonstrate that abnormal cell maturation possibly contribute to the development of myopathy and DCM. In conclusion, HOIL-1L is an important intrinsic regulator of cell cycle-related myotube and CM maturation and cell proliferation.


Sujet(s)
Cycle cellulaire , Cellules souches pluripotentes induites , Maladies musculaires , Ubiquitin-protein ligases , Animaux , Humains , Souris , Différenciation cellulaire/génétique , Lignée cellulaire , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Maladies musculaires/métabolisme , Maladies musculaires/anatomopathologie , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Cycle cellulaire/génétique
10.
JBMR Plus ; 8(5): ziae028, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38655459

RÉSUMÉ

Purpose: The purpose of this study was to identify new independent significant SNPs associated with osteoporosis using data from the Taiwan Biobank (TWBB). Material and Methods: The dataset was divided into discovery (60%) and replication (40%) subsets. Following data quality control, genome-wide association study (GWAS) analysis was performed, adjusting for sex, age, and the top 5 principal components, employing the Scalable and Accurate Implementation of the Generalized mixed model approach. This was followed by a meta-analysis of TWBB1 and TWBB2. The Functional Mapping and Annotation (FUMA) platform was used to identify osteoporosis-associated loci. Manhattan and quantile-quantile plots were generated using the FUMA platform to visualize the results. Independent significant SNPs were selected based on genome-wide significance (P < 5 × 10-8) and independence from each other (r2 < 0.6) within a 1 Mb window. Positional, eQTL(expression quantitative trait locus), and Chromatin interaction mapping were used to map SNPs to genes. Results: A total of 29 084 individuals (3154 osteoporosis cases and 25 930 controls) were used for GWAS analysis (TWBB1 data), and 18 918 individuals (1917 cases and 17 001 controls) were utilized for replication studies (TWBB2 data). We identified a new independent significant SNP for osteoporosis in TWBB1, with the lead SNP rs76140829 (minor allele frequency = 0.055, P-value = 1.15 × 10-08). Replication of the association was performed in TWBB2, yielding a P-value of 6.56 × 10-3. The meta-analysis of TWBB1 and TWBB2 data demonstrated a highly significant association for SNP rs76140829 (P-value = 7.52 × 10-10). In the positional mapping of rs76140829, 6 genes (HABP2, RP11-481H12.1, RNU7-165P, RP11-139 K1.2, RP11-57H14.3, and RP11-214 N15.5) were identified through chromatin interaction mapping in mesenchymal stem cells. Conclusions: Our GWAS analysis using the Taiwan Biobank dataset unveils rs76140829 in the VTI1A gene as a key risk variant associated with osteoporosis. This finding expands our understanding of the genetic basis of osteoporosis and highlights the potential regulatory role of this SNP in mesenchymal stem cells.

11.
Sci Adv ; 10(4): eade2780, 2024 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-38277453

RÉSUMÉ

An East Asian-specific variant on aldehyde dehydrogenase 2 (ALDH2 rs671, G>A) is the major genetic determinant of alcohol consumption. We performed an rs671 genotype-stratified genome-wide association study meta-analysis of alcohol consumption in 175,672 Japanese individuals to explore gene-gene interactions with rs671 behind drinking behavior. The analysis identified three genome-wide significant loci (GCKR, KLB, and ADH1B) in wild-type homozygotes and six (GCKR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, and GOT2) in heterozygotes, with five showing genome-wide significant interaction with rs671. Genetic correlation analyses revealed ancestry-specific genetic architecture in heterozygotes. Of the discovered loci, four (GCKR, ADH1B, ALDH1A1, and ALDH2) were suggested to interact with rs671 in the risk of esophageal cancer, a representative alcohol-related disease. Our results identify the genotype-specific genetic architecture of alcohol consumption and reveal its potential impact on alcohol-related disease risk.


Sujet(s)
Peuples d'Asie de l'Est , Tumeurs de l'oesophage , Étude d'association pangénomique , Humains , Polymorphisme de nucléotide simple , Consommation d'alcool/génétique , Génotype , Aldehyde dehydrogenase, mitochondrial/génétique , Tumeurs de l'oesophage/épidémiologie , Tumeurs de l'oesophage/génétique , Prédisposition génétique à une maladie
12.
PLoS One ; 19(1): e0297083, 2024.
Article de Anglais | MEDLINE | ID: mdl-38295120

RÉSUMÉ

BACKGROUND: Duchenne muscular dystrophy (DMD), a severe degenerative skeletal and cardiac muscle disease, has a poor prognosis, and no curative treatments are available. Because decreased autophagy has been reported to contribute to skeletal muscle degeneration, therapies targeting autophagy are expected to improve skeletal muscle hypofunction. However, the role of this regulatory mechanism has not been evaluated clearly in DMD cardiomyocytes. METHODS: In this present study, we evaluated myocardial fibrosis and its mechanism in mdx mice, a model of DMD, and also evaluated changes in cardiac function. RESULTS: As assessed by LC3 immunohistochemistry, a small number of autophagosomes were detected in cardiomyocytes of both mdx mice and control wild-type (WT) mice. The number of autophagosomes was significantly enhanced by 4 weeks of isoproterenol-induced cardiac stress in cardiomyocytes of mdx but not WT mice. Simultaneously, isoproterenol increased cardiomyocyte fibrosis in mdx but not WT mice. Administration of chloroquine significantly decreased cardiomyocyte fibrosis in mdx mice, even after isoproterenol treatment. Left ventricle size and function were evaluated by echocardiography. Left ventricular contraction was decreased in mdx mice after isoproterenol treatment compared with control mice, which was alleviated by chloroquine administration. CONCLUSIONS: Heart failure in DMD patients is possibly treated with chloroquine, and the mechanism probably involves chloroquine's anti-inflammatory effects.


Sujet(s)
Cardiomyopathies , Myopathie de Duchenne , Humains , Souris , Animaux , Myopathie de Duchenne/anatomopathologie , Souris de lignée mdx , Isoprénaline/pharmacologie , Muscles squelettiques , Myocytes cardiaques/anatomopathologie , Fibrose , Modèles animaux de maladie humaine , Dystrophine
13.
Hum Mol Genet ; 33(4): 333-341, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-37903058

RÉSUMÉ

Transcriptome-wide association studies (TWAS) have identified many putative susceptibility genes for colorectal cancer (CRC) risk. However, susceptibility miRNAs, critical dysregulators of gene expression, remain unexplored. We genotyped DNA samples from 313 CRC East Asian patients and performed small RNA sequencing in their normal colon tissues distant from tumors to build genetic models for predicting miRNA expression. We applied these models and data from genome-wide association studies (GWAS) including 23 942 cases and 217 267 controls of East Asian ancestry to investigate associations of predicted miRNA expression with CRC risk. Perturbation experiments separately by promoting and inhibiting miRNAs expressions and further in vitro assays in both SW480 and HCT116 cells were conducted. At a Bonferroni-corrected threshold of P < 4.5 × 10-4, we identified two putative susceptibility miRNAs, miR-1307-5p and miR-192-3p, located in regions more than 500 kb away from any GWAS-identified risk variants in CRC. We observed that a high predicted expression of miR-1307-5p was associated with increased CRC risk, while a low predicted expression of miR-192-3p was associated with increased CRC risk. Our experimental results further provide strong evidence of their susceptible roles by showing that miR-1307-5p and miR-192-3p play a regulatory role, respectively, in promoting and inhibiting CRC cell proliferation, migration, and invasion, which was consistently observed in both SW480 and HCT116 cells. Our study provides additional insights into the biological mechanisms underlying CRC development.


Sujet(s)
Tumeurs colorectales , microARN , Humains , microARN/génétique , microARN/métabolisme , Transcriptome/génétique , Étude d'association pangénomique , Tumeurs colorectales/métabolisme , Cellules HCT116 , Régulation de l'expression des gènes tumoraux/génétique , Prolifération cellulaire/génétique
14.
Cancer Sci ; 115(1): 184-196, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38050344

RÉSUMÉ

p53 is a key tumor suppressor mutated in half of human cancers. In recent years, p53 was shown to regulate a wide variety of functions. From the transcriptome analysis of 24 tissues of irradiated mice, we identified 553 genes markedly induced by p53. Gene Ontology (GO) enrichment analysis found that the most associated biological process was innate immunity. 16S rRNA-seq analysis revealed that Akkermansia, which has anti-inflammatory properties and is involved in the regulation of intestinal barrier integrity, was decreased in p53-knockout (p53-/- ) mice after radiation. p53-/- mice were susceptible to radiation-induced GI toxicity and had a significantly shorter survival time than p53-wild-type (p53+/+ ) mice following radiation. However, administration of antibiotics resulted in a significant improvement in survival and protection against GI toxicity. Mbl2 and Lcn2, which have antimicrobial activity, were identified to be directly transactivated by p53 and secreted by liver into the circulatory system. We also found the expression of MBL2 and LCN2 was decreased in liver cancer tissues with p53 mutations compared with those without p53 mutations. These results indicate that p53 is involved in shaping the gut microbiome through its downstream targets related to the innate immune system, thus protecting the intestinal barrier.


Sujet(s)
Microbiome gastro-intestinal , Immunité innée , Protéine p53 suppresseur de tumeur , Animaux , Humains , Souris , Tumeurs du foie/métabolisme , Lectine liant le mannose/métabolisme , Souris knockout , ARN ribosomique 16S/génétique , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme
15.
Cells ; 12(22)2023 11 20.
Article de Anglais | MEDLINE | ID: mdl-37998401

RÉSUMÉ

Oral administration of rhamnan sulfate (RS), derived from the seaweed Monostroma nitidum, markedly suppresses inflammatory damage in the vascular endothelium and organs of lipopolysaccharide-treated mice. This study aimed to analyze whether orally administered RS inhibits the development of atherosclerosis, a chronic inflammation of the arteries. ApoE-deficient female mice were fed a normal or high-fat diet (HFD) with or without RS for 12 weeks. Immunohistochemical and mRNA analyses of atherosclerosis-related genes were performed. The effect of RS on the migration of RAW264.7 cells was also examined in vitro. RS administration suppressed the increase in blood total cholesterol and triglyceride levels. In the aorta of HFD-fed mice, RS reduced vascular smooth muscle cell proliferation, macrophage accumulation, and elevation of VCAM-1 and inhibited the reduction of Robo4. Increased mRNA levels of Vcam1, Mmp9, and Srebp1 in atherosclerotic areas of HFD-fed mice were also suppressed with RS. Moreover, RS directly inhibited the migration of RAW264.7 cells in vitro. Thus, in HFD-fed ApoE-deficient mice, oral administration of RS ameliorated abnormal lipid metabolism and reduced vascular endothelial inflammation and hyperpermeability, macrophage infiltration and accumulation, and smooth muscle cell proliferation in the arteries leading to atherosclerosis. These results suggest that RS is an effective functional food for the prevention of atherosclerosis.


Sujet(s)
Athérosclérose , Chlorophyta , Animaux , Femelle , Souris , Alimentation riche en graisse , Sulfates , Athérosclérose/métabolisme , Inflammation/métabolisme , Chlorophyta/génétique , Administration par voie orale , Apolipoprotéines E , ARN messager/usage thérapeutique , Récepteurs de surface cellulaire
16.
Nat Genet ; 55(12): 2129-2138, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38036781

RÉSUMÉ

Peptic ulcer disease (PUD) refers to acid-induced injury of the digestive tract, occurring mainly in the stomach (gastric ulcer (GU)) or duodenum (duodenal ulcer (DU)). In the present study, we conducted a large-scale, cross-ancestry meta-analysis of PUD combining genome-wide association studies with Japanese and European studies (52,032 cases and 905,344 controls), and discovered 25 new loci highly concordant across ancestries. An examination of GU and DU genetic architecture demonstrated that GUs shared the same risk loci as DUs, although with smaller genetic effect sizes and higher polygenicity than DUs, indicating higher heterogeneity of GUs. Helicobacter pylori (HP)-stratified analysis found an HP-related host genetic locus. Integrative analyses using bulk and single-cell transcriptome profiles highlighted the genetic factors of PUD being enriched in the highly expressed genes in stomach tissues, especially in somatostatin-producing D cells. Our results provide genetic evidence that gastrointestinal cell differentiations and hormone regulations are critical in PUD etiology.


Sujet(s)
Ulcère duodénal , Ulcère peptique , Ulcère gastrique , Humains , Peuples d'Asie de l'Est , Étude d'association pangénomique , Ulcère peptique/génétique , Ulcère peptique/complications , Ulcère gastrique/étiologie , Ulcère duodénal/génétique , Ulcère duodénal/complications , Ulcère duodénal/diagnostic
17.
Nat Genet ; 55(12): 2065-2074, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37945903

RÉSUMÉ

The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.


Sujet(s)
Prédisposition génétique à une maladie , Tumeurs de la prostate , Humains , Mâle , /génétique , Étude d'association pangénomique , Hispanique ou Latino/génétique , Polymorphisme de nucléotide simple , Tumeurs de la prostate/génétique , Facteurs de risque , /génétique , Asiatiques/génétique
18.
Mod Pathol ; 36(11): 100317, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37634866

RÉSUMÉ

Sarcomas with BCOR genetic alterations (BCOR-associated sarcomas) represent a recently recognized family of soft tissue and bone tumors characterized by BCOR fusion, BCOR internal tandem duplication, or YWHAE::NUTM2B fusion. Histologically, the tumors demonstrate oval to spindle cell proliferation in a variably vascular stroma and overexpression of BCOR and SATB2. Herein, we describe 3 soft tissue sarcomas with KDM2B fusions that phenotypically and epigenetically match BCOR-associated sarcomas. The cases included 1 infant, 1 adolescent, and 1 older patient. All tumors showed histologic findings indistinguishable from those of BCOR-associated sarcomas and were originally diagnosed as such based on the phenotype. However, none of the tumors had BCOR or YWHAE genetic alterations. Instead, targeted RNA sequencing identified in-frame KDM2B::NUTM2B, KDM2B::CREBBP, and KDM2B::DUX4 fusions. KDM2B fusions were validated using reverse-transcription PCR, Sanger sequencing, and in situ hybridization assays. Genome-wide DNA methylation analysis matched all 3 tumors with BCOR-associated sarcomas using the Deutsches Krebsforschungszentrum (DKFZ) classifier and t-distributed stochastic neighbor embedding analysis. One localized tumor showed a flat genome-wide copy number profile, and the patient remained disease-free after treatment. The other tumors showed multiple copy number alterations, including MDM2/CDK4 amplification and/or CDKN2A/B loss, and both tumors metastasized, leading to the patient's death in one of the cases. When tested using KDM2B immunohistochemistry, all 3 KDM2B-rearranged sarcomas showed diffuse strong staining, and all 13 sarcomas with BCOR genetic alterations also demonstrated diffuse, strong, or weak staining. By contrast, among 72 mimicking tumors, only a subset of synovial sarcomas showed focal or diffuse weak KDM2B expression. In conclusion, our study suggests that KDM2B-rearranged soft tissue sarcomas belong to the BCOR-associated sarcoma family and expand its molecular spectrum. This may be related to the known molecular relationship between KDM2B and BCOR in the polycomb repressive complex 1.1. Immunohistochemical analysis of KDM2B is a potentially valuable diagnostic tool for BCOR-associated sarcomas, including those with KDM2B rearrangement.


Sujet(s)
Sarcome synovial , Sarcomes , Tumeurs des tissus mous , Nourrisson , Adolescent , Humains , Protéines de répression/génétique , Protéines de répression/analyse , Sarcomes/anatomopathologie , Facteurs de transcription/génétique , Réaction de polymérisation en chaîne , Tumeurs des tissus mous/génétique , Tumeurs des tissus mous/anatomopathologie , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/analyse , Protéines proto-oncogènes/génétique
19.
Nat Commun ; 14(1): 4863, 2023 08 23.
Article de Anglais | MEDLINE | ID: mdl-37612283

RÉSUMÉ

Prostate cancer (PrCa) is the second most common cancer worldwide in males. While strongly warranted, the prediction of mortality risk due to PrCa, especially before its development, is challenging. Here, we address this issue by maximizing the statistical power of genetic data with multi-ancestry meta-analysis and focusing on binding sites of the androgen receptor (AR), which has a critical role in PrCa. Taking advantage of large Japanese samples ever, a multi-ancestry meta-analysis comprising more than 300,000 subjects in total identifies 9 unreported loci including ZFHX3, a tumor suppressor gene, and successfully narrows down the statistically finemapped variants compared to European-only studies, and these variants strongly enrich in AR binding sites. A polygenic risk scores (PRS) analysis restricting to statistically finemapped variants in AR binding sites shows among cancer-free subjects, individuals with a PRS in the top 10% have a strongly higher risk of the future death of PrCa (HR: 5.57, P = 4.2 × 10-10). Our findings demonstrate the potential utility of leveraging large-scale genetic data and advanced analytical methods in predicting the mortality of PrCa.


Sujet(s)
Seconde tumeur primitive , Tumeurs de la prostate , Humains , Mâle , Androgènes , Sites de fixation/génétique , Hérédité multifactorielle , Tumeurs de la prostate/génétique , Récepteurs aux androgènes/génétique
20.
Sci Rep ; 13(1): 12944, 2023 08 09.
Article de Anglais | MEDLINE | ID: mdl-37558689

RÉSUMÉ

Liver cancer, particularly hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), is more common in Asians than in Caucasians. This is due, at least in part, to regional differences in the prevalence of exogenous factors such as HBV; however, endogenous factors specific to Asia might also play a role. Such endogenous factors include HLA (human leukocyte antigen) genes, which are considered candidates due to their high racial diversity. Here, we performed a pancancer association analysis of 147 alleles of HLA-class I/II genes (HLA-A, B, and C/DRB1, DQA1, DQB1, DPA1, and DPB1) in 31,727 cases of 12 cancer types, including 1684 liver cancer cases and 107,103 controls. HLA alleles comprising a haplotype prevalent in Asia were significantly associated with pancancer risk (e.g., odds ratio [OR] for a DRB1*15:02 allele = 1.12, P = 2.7 × 10-15), and the associations were particularly strong in HBV-related HCC (OR 1.95, P = 2.8 × 10-5). In silico prediction suggested that the DRB1*15:02 molecule encoded by the haplotype does not bind efficiently to HBV-derived peptides. RNA sequencing indicated that HBV-related HCC in carriers of the haplotype shows low infiltration by NK cells. These results indicate that the Asian-prevalent HLA haplotype increases the risk of HBV-related liver cancer risk by attenuating immune activity against HBV infection, and by reducing NK cell infiltration into the tumor.


Sujet(s)
Carcinome hépatocellulaire , Hépatite B , Tumeurs du foie , Maladies virales , Humains , Carcinome hépatocellulaire/génétique , Haplotypes , Virus de l'hépatite B/génétique , , Fréquence d'allèle , Tumeurs du foie/génétique , Hépatite B/complications , Hépatite B/génétique , Maladies virales/génétique , Allèles , Chaines HLA-DRB1/génétique , Prédisposition génétique à une maladie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE