Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 38
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Rep ; 43(6): 114256, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38795343

RÉSUMÉ

The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.


Sujet(s)
Vieillissement , Synapses , Animaux , Vieillissement/physiologie , Synapses/métabolisme , Humains , Facteurs d'échange de nucléotides guanyliques/métabolisme , Facteurs d'échange de nucléotides guanyliques/génétique , Drosophila melanogaster/métabolisme , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Motoneurones/métabolisme , Activité motrice , Transmission synaptique , Protein-Serine-Threonine Kinases
2.
bioRxiv ; 2023 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-37873436

RÉSUMÉ

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

3.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Article de Anglais | MEDLINE | ID: mdl-37536338

RÉSUMÉ

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Sujet(s)
Chromosomes d'insecte , Drosophila , Animaux , Chromatine/génétique , Empaquetage de l'ADN , Drosophila/génétique , Mammifères/génétique , Neurogenèse , Neurones , Facteurs de transcription , Protéines de Drosophila , Génome d'insecte , Régulation de l'expression des gènes
5.
Genetics ; 223(3)2023 03 02.
Article de Anglais | MEDLINE | ID: mdl-36602539

RÉSUMÉ

Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.


Sujet(s)
Protéines CCN de signalisation intercellulaire , Drosophila , Animaux , Femelle , Drosophila/métabolisme , Protéines CCN de signalisation intercellulaire/composition chimique , Protéines CCN de signalisation intercellulaire/métabolisme , Transmission synaptique/génétique , Fécondité/génétique , Fibrinogène
6.
Nat Commun ; 13(1): 5049, 2022 08 27.
Article de Anglais | MEDLINE | ID: mdl-36030267

RÉSUMÉ

Alteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson's and late onset Alzheimer's disease. We reveal that reduction of retromer activity induces a potent enhancement of hTau toxicity upon synapse loss, axon retraction and lifespan through a specific increase in the production of a C-terminal truncated isoform of hTau. Our data establish a molecular and subcellular mechanism necessary and sufficient for the depletion of retromer activity to exacerbate Tau-dependent neurodegeneration.


Sujet(s)
Maladies neurodégénératives , Tauopathies , Animaux , Axones , Modèles animaux de maladie humaine , Drosophila , Humains , Maturation post-traductionnelle des protéines , Protéines tau
7.
Elife ; 112022 07 08.
Article de Anglais | MEDLINE | ID: mdl-35801638

RÉSUMÉ

Establishing with precision the quantity and identity of the cell types of the brain is a prerequisite for a detailed compendium of gene and protein expression in the central nervous system (CNS). Currently, however, strict quantitation of cell numbers has been achieved only for the nervous system of Caenorhabditis elegans. Here, we describe the development of a synergistic pipeline of molecular genetic, imaging, and computational technologies designed to allow high-throughput, precise quantitation with cellular resolution of reporters of gene expression in intact whole tissues with complex cellular constitutions such as the brain. We have deployed the approach to determine with exactitude the number of functional neurons and glia in the entire intact larval Drosophila CNS, revealing fewer neurons and more glial cells than previously predicted. We also discover an unexpected divergence between the sexes at this juvenile developmental stage, with the female CNS having significantly more neurons than that of males. Topological analysis of our data establishes that this sexual dimorphism extends to deeper features of CNS organisation. We additionally extended our analysis to quantitate the expression of voltage-gated potassium channel family genes throughout the CNS and uncover substantial differences in abundance. Our methodology enables robust and accurate quantification of the number and positioning of cells within intact organs, facilitating sophisticated analysis of cellular identity, diversity, and gene expression characteristics.


Sujet(s)
Protéines de Drosophila , Drosophila , Animaux , Caenorhabditis elegans , Système nerveux central/métabolisme , Drosophila/physiologie , Protéines de Drosophila/métabolisme , Femelle , Mâle , Névroglie , Caractères sexuels
8.
J Neurosci Methods ; 372: 109540, 2022 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-35219770

RÉSUMÉ

BACKGROUND: Throughout the animal kingdom, GABA is the principal inhibitory neurotransmitter of the nervous system. It is essential for maintaining the homeostatic balance between excitation and inhibition required for the brain to operate normally. Identification of GABAergic neurons and their GABA release sites are thus essential for understanding how the brain regulates the excitability of neurons and the activity of neural circuits responsible for numerous aspects of brain function including information processing, locomotion, learning, memory, and synaptic plasticity, among others. NEW METHOD: Since the structure and features of GABA synapses are critical to understanding their function within specific neural circuits of interest, here we developed and characterized a conditional marker of GABAergic synaptic vesicles for Drosophila, 9XV5-vGAT. RESULTS: 9XV5-vGAT is validated for conditionality of expression, specificity for localization to synaptic vesicles, specificity for expression in GABAergic neurons, and functionality. Its utility for GABAergic neurotransmitter phenotyping and identification of GABA release sites was verified for ellipsoid body neurons of the central complex. In combination with previously reported conditional SV markers for acetylcholine and glutamate, 9XV5-vGAT was used to demonstrate fast neurotransmitter phenotyping of subesophageal ganglion neurons. COMPARISON WITH EXISTING METHODS: This method is an alternative to single cell transcriptomics for neurotransmitter phenotyping and can be applied to any neurons of interest represented by a binary transcription system driver. CONCLUSION: A conditional GABAergic synaptic vesicle marker has been developed and validated for GABA neurotransmitter phenotyping and subcellular localization of GABAergic synaptic vesicles.


Sujet(s)
Drosophila , Vésicules synaptiques , Animaux , Drosophila/métabolisme , Neurones GABAergiques , Acide glutamique/métabolisme , Synapses/métabolisme , Vésicules synaptiques/métabolisme
9.
G3 (Bethesda) ; 12(3)2022 03 04.
Article de Anglais | MEDLINE | ID: mdl-35100385

RÉSUMÉ

Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here, we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.


Sujet(s)
Drosophila , Vésicules synaptiques , Animaux , Système nerveux central/métabolisme , Drosophila/génétique , Drosophila/métabolisme , Acide glutamique/métabolisme , Neurones/métabolisme , Transmission synaptique , Vésicules synaptiques/métabolisme
10.
Nat Commun ; 12(1): 4399, 2021 07 20.
Article de Anglais | MEDLINE | ID: mdl-34285221

RÉSUMÉ

The decline of neuronal synapses is an established feature of ageing accompanied by the diminishment of neuronal function, and in the motor system at least, a reduction of behavioural capacity. Here, we have investigated Drosophila motor neuron synaptic terminals during ageing. We observed cumulative fragmentation of presynaptic structures accompanied by diminishment of both evoked and miniature neurotransmission occurring in tandem with reduced motor ability. Through discrete manipulation of each neurotransmission modality, we find that miniature but not evoked neurotransmission is required to maintain presynaptic architecture and that increasing miniature events can both preserve synaptic structures and prolong motor ability during ageing. Our results establish that miniature neurotransmission, formerly viewed as an epiphenomenon, is necessary for the long-term stability of synaptic connections.


Sujet(s)
Vieillissement/physiologie , Motoneurones/physiologie , Terminaisons présynaptiques/physiologie , Transmission synaptique/physiologie , Animaux , Animal génétiquement modifié , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Drosophila melanogaster , Potentiels évoqués moteurs/physiologie , Mâle , Microscopie électronique , Modèles animaux , Motoneurones/ultrastructure , Muscles/innervation , Muscles/physiologie , Muscles/ultrastructure , Terminaisons présynaptiques/ultrastructure , Facteurs temps
11.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-33918092

RÉSUMÉ

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.


Sujet(s)
Sclérose latérale amyotrophique/étiologie , Sclérose latérale amyotrophique/métabolisme , Prédisposition aux maladies , Facteur de transcription NF-kappa B/métabolisme , Allèles , Sclérose latérale amyotrophique/anatomopathologie , Animaux , Marqueurs biologiques , Environnement , Activation enzymatique , Prédisposition génétique à une maladie , Variation génétique , Humains , Microglie/métabolisme , Microglie/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie , Oligodendroglie/métabolisme , Oligodendroglie/anatomopathologie
12.
Aging Cell ; 20(5): e13365, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33909313

RÉSUMÉ

Age is the greatest risk factor for Parkinson's disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex- and age-related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age-related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age- and sex-related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age-related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age- and PD-related neurodegeneration.


Sujet(s)
Vieillissement/physiologie , Neurones dopaminergiques/physiologie , Protéines de Drosophila/physiologie , Caractères sexuels , Transporteurs vésiculaires du glutamate/physiologie , Animaux , Survie cellulaire , Neurones dopaminergiques/métabolisme , Drosophila/métabolisme , Drosophila/physiologie , Protéines de Drosophila/métabolisme , Femelle , Humains , Locomotion , Mâle , Souris , Rats , Transporteurs vésiculaires du glutamate/métabolisme
13.
PLoS Genet ; 16(2): e1008609, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-32097408

RÉSUMÉ

Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects in associated circuits. Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males without OA display low levels of aggression and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples aggression from OA-dependent courtship-related behavior. These results indicate that dual neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique functions within a multi-functional social behavior neuronal network.


Sujet(s)
Agressivité , Protéines de Drosophila/génétique , Drosophila melanogaster/physiologie , Neurones/métabolisme , Transmission synaptique/génétique , Transporteurs vésiculaires du glutamate/génétique , Animaux , Animal génétiquement modifié , Comportement animal , Parade nuptiale , Protéines de Drosophila/métabolisme , Femelle , Acide glutamique/métabolisme , Mâle , Octopamine/métabolisme , Facteurs sexuels , Transduction du signal/génétique , Vésicules synaptiques/métabolisme , Transporteurs vésiculaires du glutamate/métabolisme , Transporteurs vésiculaires des monoamines/métabolisme
14.
Nature ; 573(7775): 526-531, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-31534217

RÉSUMÉ

Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is a common and disruptive form of cancer and is prevalent in the aggressive basal-like subtype, but is also found at varying frequencies in all cancer subtypes. Previous studies revealed parameters of breast cancer metastasis to the brain, but its preference for this site remains an enigma. Here we show that B2BM cells co-opt a neuronal signalling pathway that was recently implicated in invasive tumour growth, involving activation by glutamate ligands of N-methyl-D-aspartate receptors (NMDARs), which is key in model systems for metastatic colonization of the brain and is associated with poor prognosis. Whereas NMDAR activation is autocrine in some primary tumour types, human and mouse B2BM cells express receptors but secrete insufficient glutamate to induce signalling, which is instead achieved by the formation of pseudo-tripartite synapses between cancer cells and glutamatergic neurons, presenting a rationale for brain metastasis.


Sujet(s)
Tumeurs du cerveau/physiopathologie , Tumeurs du cerveau/secondaire , Récepteurs du N-méthyl-D-aspartate/physiologie , Transduction du signal/physiologie , Synapses/physiologie , Animaux , Tumeurs du cerveau/ultrastructure , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Femelle , Humains , Souris , Microscopie électronique à balayage , Microscopie électronique à transmission , Métastase tumorale , Récepteurs du N-méthyl-D-aspartate/métabolisme , Synapses/ultrastructure , Transmission synaptique
15.
Sci Rep ; 8(1): 7664, 2018 05 16.
Article de Anglais | MEDLINE | ID: mdl-29769701

RÉSUMÉ

Essential Tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the US; the pathophysiology of the disorder is poorly understood. Recently, we identified a mutation (KCNS2 (Kv9.2), c.1137 T > A, p.(D379E) in an electrically silent voltage-gated K+ channel α-subunit, Kv9.2, in a family with ET, that modulates the activity of Kv2 channels. We have produced transgenic Drosophila lines that express either the human wild type Kv9.2 (hKv9.2) or the ET causing mutant Kv9.2 (hKv9.2-D379E) subunit in all neurons. We show that the hKv9.2 subunit modulates activity of endogenous Drosophila K+ channel Shab. The mutant hKv9.2-D379E subunit showed significantly higher levels of Shab inactivation and a higher frequency of spontaneous firing rate consistent with neuronal hyperexcitibility. We also observed behavioral manifestations of nervous system dysfunction including effects on night time activity and sleep. This functional data further supports the pathogenicity of the KCNS2 (p.D379E) mutation, consistent with our prior observations including co-segregation with ET in a family, a likely pathogenic change in the channel pore domain and absence from population databases. The Drosophila hKv9.2 transgenic model recapitulates several features of ET and may be employed to advance our understanding of ET disease pathogenesis.


Sujet(s)
Encéphale/anatomopathologie , Drosophila melanogaster/métabolisme , Tremblement essentiel/complications , Modèles neurologiques , Mutation , Canaux potassiques voltage-dépendants/métabolisme , Troubles de la veille et du sommeil/étiologie , Adulte , Algorithmes , Animaux , Animal génétiquement modifié/génétique , Animal génétiquement modifié/croissance et développement , Animal génétiquement modifié/métabolisme , Comportement animal , Encéphale/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/croissance et développement , Tremblement essentiel/physiopathologie , Femelle , Humains , Ouverture et fermeture des portes des canaux ioniques , Mâle , Canaux potassiques voltage-dépendants/génétique , Troubles de la veille et du sommeil/anatomopathologie , Ailes d'animaux/physiopathologie , Jeune adulte
16.
Neuron ; 95(5): 1074-1088.e7, 2017 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-28823729

RÉSUMÉ

The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.


Sujet(s)
Dopamine/métabolisme , Neurones/métabolisme , Vésicules synaptiques/métabolisme , Transporteur vésiculaire-2 du glutamate/physiologie , Animaux , Animal génétiquement modifié , Dexamfétamine/pharmacologie , Drosophila , Protéines de Drosophila/métabolisme , Concentration en ions d'hydrogène , Locomotion/effets des médicaments et des substances chimiques , Mésencéphale/métabolisme , Souris , Neurones/physiologie , Terminaisons présynaptiques/métabolisme , Transporteur vésiculaire-2 du glutamate/génétique
17.
Neurobiol Dis ; 105: 42-50, 2017 Sep.
Article de Anglais | MEDLINE | ID: mdl-28502804

RÉSUMÉ

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.


Sujet(s)
Protéines de Drosophila/métabolisme , Locomotion/physiologie , Troubles de la motricité/étiologie , Amyotrophie spinale/complications , Protéines de liaison à l'ARN/métabolisme , Animaux , Animal génétiquement modifié , Caenorhabditis elegans , Modèles animaux de maladie humaine , Drosophila , Protéines de Drosophila/génétique , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Motoneurones/anatomopathologie , Amyotrophie spinale/génétique , Phénotype , Interférence par ARN/physiologie , Protéines de liaison à l'ARN/génétique , Protéine-1 de survie du motoneurone
18.
Nat Commun ; 7: 10652, 2016 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-26879809

RÉSUMÉ

Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H(+) antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects.


Sujet(s)
Amfétamine/pharmacologie , Encéphale/effets des médicaments et des substances chimiques , Agents dopaminergiques/pharmacologie , Transporteurs de la dopamine/effets des médicaments et des substances chimiques , Dopamine/métabolisme , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Locomotion/effets des médicaments et des substances chimiques , Vésicules synaptiques/effets des médicaments et des substances chimiques , Transporteurs vésiculaires des monoamines/antagonistes et inhibiteurs , Animaux , Animal génétiquement modifié , Encéphale/métabolisme , Cocaïne/pharmacologie , Transporteurs de la dopamine/métabolisme , Neurones dopaminergiques/métabolisme , Drosophila melanogaster , Cellules HEK293 , Humains , Traitement d'image par ordinateur , Métamfétamine/pharmacologie , Méthylphénidate/pharmacologie , Imagerie optique , Rats , Transporteurs vésiculaires des monoamines/effets des médicaments et des substances chimiques , Transporteurs vésiculaires des monoamines/métabolisme
19.
J Clin Invest ; 125(2): 681-6, 2015 Feb.
Article de Anglais | MEDLINE | ID: mdl-25574843

RÉSUMÉ

Tau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer's disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain miRNA miR-219 is downregulated in brain tissue taken at autopsy from patients with AD and from those with severe primary age-related tauopathy. In a Drosophila model that produces human tau, reduction of miR-219 exacerbated tau toxicity, while overexpression of miR-219 partially abrogated toxic effects. Moreover, we observed a bidirectional modulation of tau levels in the Drosophila model that was dependent on miR-219 expression or neutralization, demonstrating that miR-219 regulates tau in vivo. In mammalian cellular models, we found that miR-219 binds directly to the 3'-UTR of the tau mRNA and represses tau synthesis at the post-transcriptional level. Together, our data indicate that silencing of tau by miR-219 is an ancient regulatory mechanism that may become perturbed during neurofibrillary degeneration and suggest that this regulatory pathway may be useful for developing therapeutics for tauopathies.


Sujet(s)
Régions 3' non traduites , Maladie d'Alzheimer/métabolisme , microARN/métabolisme , Biosynthèse des protéines , Protéines tau/biosynthèse , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/anatomopathologie , Animaux , Modèles animaux de maladie humaine , Drosophila melanogaster , Humains , microARN/génétique , Protéines tau/génétique
20.
Neuron ; 82(3): 618-34, 2014 May 07.
Article de Anglais | MEDLINE | ID: mdl-24811381

RÉSUMÉ

Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that miniature neurotransmission is required for the normal structural maturation of Drosophila glutamatergic synapses in a developmental role that is not shared by evoked neurotransmission. Conversely, we find that increasing miniature events is sufficient to induce synaptic terminal growth. We show that miniature neurotransmission acts locally at terminals to regulate synapse maturation via a Trio guanine nucleotide exchange factor (GEF) and Rac1 GTPase molecular signaling pathway. Our results establish that miniature neurotransmission, a universal but often-overlooked feature of synapses, has unique and essential functions in vivo.


Sujet(s)
Potentiels post-synaptiques miniatures/physiologie , Synapses/physiologie , Synapses/ultrastructure , Transmission synaptique/physiologie , Animaux , Animal génétiquement modifié , Drosophila , Jonction neuromusculaire/physiologie , Jonction neuromusculaire/ultrastructure , Terminaisons présynaptiques/physiologie , Terminaisons présynaptiques/ultrastructure
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...