Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 25
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Curr Biol ; 33(23): 5147-5159.e7, 2023 12 04.
Article de Anglais | MEDLINE | ID: mdl-38052161

RÉSUMÉ

Fungi that are edible or fermentative were domesticated through selective cultivation of their desired traits. Domestication is often associated with inbreeding or selfing, which may fix traits other than those under selection, and causes an overall decrease in heterozygosity. A hallucinogenic mushroom, Psilocybe cubensis, was domesticated from its niche in livestock dung for production of psilocybin. It has caused accidental poisonings since the 1940s in Australia, which is a population hypothesized to be introduced from an unknown center of origin. We sequenced genomes of 38 isolates from Australia and compared them with 86 genomes of commercially available cultivars to determine (1) whether P. cubensis was introduced to Australia, and (2) how domestication has impacted commercial cultivars. Our analyses of genome-wide SNPs and single-copy orthologs showed that the Australian population is naturalized, having recovered its effective population size after a bottleneck when it was introduced, and it has maintained relatively high genetic diversity based on measures of nucleotide and allelic diversity. In contrast, domesticated cultivars generally have low effective population sizes and hallmarks of selfing and clonal propagation, including low genetic diversity, low heterozygosity, high linkage disequilibrium, and low allelic diversity of mating-compatibility genes. Analyses of kinship show that most cultivars are founded from related populations. Alleles in the psilocybin gene cluster are identical across most cultivars of P. cubensis with low diversity across coding sequence; however, unique allelic diversity in Australia and some cultivars may translate to differences in biosynthesis of psilocybin and its analogs.


Sujet(s)
Hallucinogènes , Psilocybine , Domestication , Australie , Polymorphisme de nucléotide simple , Variation génétique
2.
Commun Biol ; 6(1): 1234, 2023 12 06.
Article de Anglais | MEDLINE | ID: mdl-38057635

RÉSUMÉ

Fungal pathogens that impact perennial plants or natural ecosystems require management strategies beyond fungicides and breeding for resistance. Rust fungi, some of the most economically and environmentally important plant pathogens, have shown amenability to double-stranded RNA (dsRNA) mediated control. To date, dsRNA treatments have been applied prior to infection or together with the inoculum. Here we show that a dsRNA spray can effectively prevent and cure infection by Austropuccinia psidii (cause of myrtle rust) at different stages of the disease cycle. Significant reductions in disease coverage were observed in plants treated with dsRNA targeting essential fungal genes 48 h pre-infection through to 14 days post-infection. For curative treatments, improvements in plant health and photosynthetic capacity were seen 2-6 weeks post-infection. Two-photon microscopy suggests inhibitory activity of dsRNA on intercellular hyphae or haustoria. Our results show that dsRNA acts both preventively and curatively against myrtle rust disease, with treated plants recovering from severe infection. These findings have immediate potential in the management of the more than 10-year epidemic of myrtle rust in Australia.


Sujet(s)
Fongicides industriels , ARN double brin , ARN double brin/génétique , Écosystème , Amélioration des plantes , Australie
3.
Fungal Genet Biol ; 165: 103769, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36587787

RÉSUMÉ

Knowledge of breeding systems and genetic diversity is critical to select and combine desired traits that advance new cultivars in agriculture and horticulture. Mushrooms that produce psilocybin, magic mushrooms, may potentially be used in therapeutic and wellness industries, and stand to benefit from genetic improvement. We studied haploid siblings of Psilocybe subaeruginosa to resolve the genetics behind mating compatibility and advance knowledge of breeding. Our results show that mating in P. subaeruginosa is tetrapolar, with compatibility controlled at a homeodomain locus with one copy each of HD1 and HD2, and a pheromone/receptor locus with four homologs of the receptor gene STE3. An additional two pheromone/receptor loci homologous to STE3 do not appear to regulate mating compatibility. Alleles in the psilocybin gene cluster did not vary among the five siblings and were likely homozygous in the parent. Psilocybe subaeruginosa and its relatives have three copies of PsiH genes but their impact on production of psilocybin and its analogues is unknown. Genetic improvement in Psilocybe will require access to genetic diversity from the centre of origin of different species, identification of genes behind traits, and strategies to avoid inbreeding depression.


Sujet(s)
Psilocybe , Psilocybine , Psilocybe/génétique , Duplication de gène , Récepteurs aux phéromones/génétique , Phéromones , Gènes fongiques du type conjugant
4.
Mol Plant Pathol ; 24(3): 191-207, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36528383

RÉSUMÉ

Rust fungi (Pucciniales) are a diverse group of plant pathogens in natural and agricultural systems. They pose ongoing threats to the diversity of native flora and cause annual crop yield losses. Agricultural rusts are predominantly managed with fungicides and breeding for resistance, but new control strategies are needed on non-agricultural plants and in fragile ecosystems. RNA interference (RNAi) induced by exogenous double-stranded RNA (dsRNA) has promise as a sustainable approach for managing plant-pathogenic fungi, including rust fungi. We investigated the mechanisms and impact of exogenous dsRNA on rust fungi through in vitro and whole-plant assays using two species as models, Austropuccinia psidii (the cause of myrtle rust) and Coleosporium plumeriae (the cause of frangipani rust). In vitro, dsRNA either associates externally or is internalized by urediniospores during the early stages of germination. The impact of dsRNA on rust infection architecture was examined on artificial leaf surfaces. dsRNA targeting predicted essential genes significantly reduced germination and inhibited development of infection structures, namely appressoria and penetration pegs. Exogenous dsRNA sprayed onto 1-year-old trees significantly reduced myrtle rust symptoms. Furthermore, we used comparative genomics to assess the wide-scale amenability of dsRNA to control rust fungi. We sequenced genomes of six species of rust fungi, including three new families (Araucariomyceaceae, Phragmidiaceae, and Skierkaceae) and identified key genes of the RNAi pathway across 15 species in eight families of Pucciniales. Together, these findings indicate that dsRNA targeting essential genes has potential for broad-use management of rust fungi across natural and agricultural systems.


Sujet(s)
Basidiomycota , ARN double brin , ARN double brin/génétique , Écosystème , Basidiomycota/génétique , Champignons/génétique , Interférence par ARN , Génomique
5.
J Biotechnol ; 359: 82-94, 2022 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-36174794

RÉSUMÉ

Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.


Sujet(s)
microARN , ARN long non codant , ARN circulaire , ARN non traduit/génétique , ARN non traduit/métabolisme , Plantes/génétique , Plantes/métabolisme , ARN long non codant/génétique , Mécanismes de défense , microARN/génétique , ARN des plantes/génétique
6.
Arch Virol ; 167(11): 2325-2329, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-35969294

RÉSUMÉ

In this brief note, we review the taxonomic history of dahlia mosaic virus (DMV) and related viruses. DMV is the only officially recognized caulimovirus known to infect dahlia (Dahlia variabilis) plants, although this virus appears to be relatively rare as a pathogen compared to a more recently described but unclassified caulimovirus called dahlia common mosaic virus (DCMV). We have undertaken a new set of analyses to test the hypothesis that DCMV represents a new caulimovirus species whose members infect dahlia, but we ultimately reject this hypothesis. A probable sequencing error was identified in the reference genome sequence of DMV, and consequently, we recommend that an alternative virus isolate be nominated as the exemplar for this species. In accordance with the new binomial nomenclatural system, it is proposed that the virus species be called "Caulimovirus dahliae".


Sujet(s)
Dahlia , Virus , Caulimovirus , Phylogenèse
7.
PLoS Pathog ; 18(5): e1010439, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35617196

RÉSUMÉ

Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles.


Sujet(s)
Basidiomycota , Maladies des plantes , Animaux , Basidiomycota/génétique , Champignons , Étapes du cycle de vie , Maladies des plantes/microbiologie , Reproduction
8.
Fungal Genet Biol ; 160: 103692, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35436590

RÉSUMÉ

Austropuccinia psidii is the causal agent of myrtle rust, a fungal disease that infects over 480 species in the Myrtaceae. A. psidii is a biotrophic pathogen that reproduces sexually and asexually. Sexual reproduction has been previously shown on Syzygium jambos and little is known about its reproductive biology on other hosts or whether populations that were formerly structured by host range can outcross on universally susceptible hosts. We investigated if mating genes in three genomes of A. psidii were under selection as a proxy for whether different strains can reproduce sexually on a shared host. We examined three homologs of the STE3.2 gene, sequences of which were near-identical in the three genomes, and the homeodomain locus, which contained two alleles of two homeodomain genes in each genome. A. psidii likely uses tetrapolar mating. Pheromone/receptor loci were distal to homeodomain loci, and based on haplotypes of a phased assembly, mate compatibility is regulated by multiallelic HD genes and biallelic STE3.2 genes; the third homolog of STE3.2 (STE3.2-1) was present in both haplotypes, and our study supports hypotheses this gene does not regulate mate recognition. Populations of A. psidii formerly structured by host range could potentially outcross on universal hosts based on their related mating genes, however this hypothesis should remain theoretical given the implications for biosecurity. Additionally, we searched for core meiotic genes in genomes of A. psidii, four species of Puccinia, and Sphaerophragmium acaciae through comparative genomics based on 136 meiosis-related orthologous genes modeled from Mycosarcoma maydis. Meiotic genes are conserved in rust fungi at family rank. We analyzed the expression of two meiotic and four mitotic genes of A. psidii on E. grandis over a 28-day time course to validate that identified meiotic genes were upregulated in teliospores. Three mitotic genes were significantly downregulated in samples collected 28 days after inoculation (DAI) compared to 14 DAI. Expression of meiotic genes was significantly up-regulated in samples collected 28 DAI compared to 14 DAI, indicating a temporal switch from production of uredinia (mitotic stage) to telia in the life cycle, which we hypothesize may be in response to leaf ageing.


Sujet(s)
Basidiomycota , Eucalyptus , Basidiomycota/génétique , Eucalyptus/génétique , Eucalyptus/microbiologie , Maladies des plantes/microbiologie , Reproduction , Spores
9.
Arch Virol ; 166(3): 813-829, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33481112

RÉSUMÉ

Disease outbreaks caused by turnip yellows virus (TuYV), a member of the genus Polerovirus, family Luteoviridae, regularly occur in canola and pulse crops throughout Australia. To understand the genetic diversity of TuYV for resistance breeding and management, genome sequences of 28 TuYV isolates from different hosts and locations were determined using high-throughput sequencing (HTS). We aimed to identify the parts of the genome that were most variable and clarify the taxonomy of viruses related to TuYV. Poleroviruses contain seven open reading frames (ORFs): ORF 0-2, 3a, and 3-5. Phylogenetic analysis based on the genome sequences, including isolates of TuYV and brassica yellows virus (BrYV) from the GenBank database, showed that most genetic variation among isolates occurred in ORF 5, followed by ORF 0 and ORF 3a. Phylogenetic analysis of ORF 5 revealed three TuYV groups; P5 group 1 and group 3 shared 45-49% amino acid sequence identity, and group 2 is a recombinant between the other two. Phylogenomic analysis of the concatenated ORFs showed that TuYV is paraphyletic with respect to BrYV, and together these taxa form a well-supported monophyletic group. Our results support the hypothesis that TuYV and BrYV belong to the same species and that the phylogenetic topologies of ORF 0, 3a and 5 are incongruent and may not be informative for species demarcation. A number of beet western yellow virus (BWYV)- and TuYV-associated RNAs (aRNA) were also identified by HTS for the first time in Australia.


Sujet(s)
Brassica napus/virologie , Génome viral/génétique , Luteoviridae/classification , Luteoviridae/génétique , Séquence d'acides aminés , Australie , Séquence nucléotidique , Variation génétique/génétique , Génotype , Séquençage nucléotidique à haut débit , Cadres ouverts de lecture/génétique , Phylogenèse , Maladies des plantes/virologie , ARN viral/génétique
10.
Pathogens ; 9(3)2020 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-32183134

RÉSUMÉ

Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1-3) of an Australian AMV isolate from alfalfa.

11.
Arch Virol ; 164(9): 2367-2370, 2019 Sep.
Article de Anglais | MEDLINE | ID: mdl-31256263

RÉSUMÉ

Garlic mite-borne filamentous virus is one of the oldest recognized allexivirus species but, paradoxically, one with the least well studied member viruses. In this paper, we review the history of this taxon and highlight problems in designating a holotype (exemplar isolate). Analyses are presented that suggest that GarMbFV is conspecific with Garlic virus A, and therefore the former taxon should be abolished.


Sujet(s)
Vecteurs arachnides/virologie , Flexiviridae/classification , Ail/virologie , Mites (acariens)/virologie , Maladies des plantes/virologie , Animaux , Vecteurs arachnides/physiologie , Flexiviridae/génétique , Flexiviridae/isolement et purification , Mites (acariens)/physiologie , Phylogenèse
12.
Fungal Biol ; 123(5): 351-363, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-31053324

RÉSUMÉ

The overall goal of this study was to determine whether the genome of an important plant pathogen in Africa, Ceratocystis albifundus, is structured into subgenomic compartments, and if so, to establish how these compartments are distributed across the genome. For this purpose, the publicly available genome of C. albifundus was complemented with the genome sequences for four additional isolates using the Illumina HiSeq platform. In addition, a reference genome for one of the individuals was assembled using both PacBio and Illumina HiSeq technologies. Our results showed a high degree of synteny between the five genomes, although several regions lacked detectable long-range synteny. These regions were associated with the presence of accessory genes, lower genetic similarity, variation in read-map depth, as well as transposable elements and genes associated with host-pathogen interactions (e.g. effectors and CAZymes). Such patterns are regarded as hallmarks of accelerated evolution, particularly of accessory subgenomic compartments in fungal pathogens. Our findings thus showed that the genome of C. albifundus is made-up of core and accessory subgenomic compartments, which is an important step towards characterizing its pangenome. This study also highlights the value of comparative genomics for understanding mechanisms that may underly and influence the biology and evolution of pathogens.


Sujet(s)
Ascomycota/génétique , Génome fongique , Maladies des plantes/microbiologie , Arbres/microbiologie , Afrique , Biologie informatique , Évolution moléculaire , Ordre des gènes , Variation génétique , Génomique , Séquençage nucléotidique à haut débit , Séquences répétées dispersées , Synténie
13.
PeerJ ; 7: e6698, 2019.
Article de Anglais | MEDLINE | ID: mdl-31024760

RÉSUMÉ

With the increased availability of genome sequences for bacteria, it has become routine practice to construct genome-based phylogenies. These phylogenies have formed the basis for various taxonomic decisions, especially for resolving problematic relationships between taxa. Despite the popularity of concatenating shared genes to obtain well-supported phylogenies, various issues regarding this combined-evidence approach have been raised. These include the introduction of phylogenetic error into datasets, as well as incongruence due to organism-level evolutionary processes, particularly horizontal gene transfer and incomplete lineage sorting. Because of the huge effect that this could have on phylogenies, we evaluated the impact of phylogenetic conflict caused by organism-level evolutionary processes on the established species phylogeny for Pantoea, a member of the Enterobacterales. We explored the presence and distribution of phylogenetic conflict at the gene partition and nucleotide levels, by identifying putative inter-lineage recombination events that might have contributed to such conflict. Furthermore, we determined whether smaller, randomly constructed datasets had sufficient signal to reconstruct the current species tree hypothesis or if they would be overshadowed by phylogenetic incongruence. We found that no individual gene tree was fully congruent with the species phylogeny of Pantoea, although many of the expected nodes were supported by various individual genes across the genome. Evidence of recombination was found across all lineages within Pantoea, and provides support for organism-level evolutionary processes as a potential source of phylogenetic conflict. The phylogenetic signal from at least 70 random genes recovered robust, well-supported phylogenies for the backbone and most species relationships of Pantoea, and was unaffected by phylogenetic conflict within the dataset. Furthermore, despite providing limited resolution among taxa at the level of single gene trees, concatenated analyses of genes that were identified as having no signal resulted in a phylogeny that resembled the species phylogeny of Pantoea. This distribution of signal and noise across the genome presents the ideal situation for phylogenetic inference, as the topology from a ≥70-gene concatenated species phylogeny is not driven by single genes, and our data suggests that this finding may also hold true for smaller datasets. We thus argue that, by using a concatenation-based approach in phylogenomics, one can obtain robust phylogenies due to the synergistic effect of the combined signal obtained from multiple genes.

14.
IMA Fungus ; 10: 18, 2019.
Article de Anglais | MEDLINE | ID: mdl-32647622

RÉSUMÉ

Clonal reproduction is common in fungi and fungal-like organisms during epidemics and invasion events. The success of clonal fungi shaped systems for their classification and some pathogens are tacitly treated as asexual. We argue that genetic recombination driven by sexual reproduction must be a starting hypothesis when dealing with fungi for two reasons: (1) Clones eventually crash because they lack adaptability; and (2) fungi find a way to exchange genetic material through recombination, whether sexual, parasexual, or hybridisation. Successful clones may prevail over space and time, but they are the product of recombination and the next successful clone will inevitably appear. Fungal pathogen populations are dynamic rather than static, and they need genetic recombination to adapt to a changing environment.

15.
Biotechniques ; 65(5): 253-257, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30394132

RÉSUMÉ

It is challenging to sequence and assemble genomes of obligate plant pathogens and microorganisms because of limited amounts of DNA, comparatively large genomes and high numbers of repeat regions. We sequenced the 1.2 gigabase genome of an obligate rust fungus, Austropuccinia psidii, the cause of rust on Myrtaceae, with a Chromium 10X library. This technology has mostly been applied for single-cell sequencing in immunological studies of mammals. We compared scaffolds of a genome assembled from the Chromium library with one assembled from combined paired-end and mate-pair libraries, sequenced with Illumina HiSeq. Chromium 10X provided a superior assembly, in terms of number of scaffolds, N50 and number of genes recovered. It required less DNA than other methods and was sequenced and assembled at a lower cost. Chromium sequencing could provide a solution to sequence and assemble genomes of obligate plant pathogens where the amount of available DNA is a limiting factor.


Sujet(s)
Basidiomycota/génétique , ADN fongique/génétique , Génome fongique , Génomique/méthodes , Myrtaceae/microbiologie , Maladies des plantes/microbiologie , Analyse de séquence d'ADN/méthodes , Chrome/composition chimique , ADN fongique/analyse , Banque de gènes
16.
Fungal Biol ; 122(8): 800-809, 2018 08.
Article de Anglais | MEDLINE | ID: mdl-30007430

RÉSUMÉ

Species of Coleosporium (Pucciniales) are rust fungi that typically alternate between pines and angiosperms. In North America, species of Coleosporium often infect Solidago (goldenrods), although their taxonomy on these hosts is unresolved. Joseph. C. Arthur and George B. Cummins regarded these as a single species, Coleosporium solidaginis (fide Arthur) or C. asterum (fide Cummins), but later inoculation studies demonstrated the presence of more than one species, distinguishable by their aecial hosts. A more recent taxonomic study of Coleosporium found that specimens on Solidago identified as C. asterum in North America were not conspecific with the type, which is from Japan, prompting the present study. Herein, we conducted a systematic study on ca. 60 collections of Coleosporium infecting species of Asteraceae from North America using regions of ribosomal DNA and morphology of teliospores and basidia. Our data indicate at least three species of Coleosporium occur on Solidago in North America, C. solidaginis, C. montanum comb. nov., which is proposed for the taxon that has commonly been identified as C. asterum in North America, and C. delicatulum, all of which can be differentiated by morphology of their basidia. In addition, the challenges of marker selection for molecular barcoding of rust fungi is discussed.


Sujet(s)
Basidiomycota/classification , Basidiomycota/isolement et purification , Solidago/microbiologie , Basidiomycota/génétique , Basidiomycota/croissance et développement , Analyse de regroupements , ADN fongique/composition chimique , ADN fongique/génétique , ADN ribosomique/composition chimique , ADN ribosomique/génétique , Espaceur de l'ADN ribosomique/composition chimique , Espaceur de l'ADN ribosomique/génétique , Microscopie , Amérique du Nord , Phylogenèse , Analyse de séquence d'ADN
17.
Adv Genet ; 100: 267-307, 2017.
Article de Anglais | MEDLINE | ID: mdl-29153402

RÉSUMÉ

Rust fungi (Pucciniales) are the most speciose and the most complex group of plant pathogens. Historically, rust taxonomy was largely influenced by host and phenotypic characters, which are potentially plastic. Molecular systematic studies suggest that the extant diversity of this group was largely shaped by host jumps and subsequent shifts. However, it has been challenging to reconstruct the evolutionary history for the order, especially at deeper (family-level) nodes. Phylogenomics offer a potentially powerful tool to reconstruct the Pucciniales tree of life, although researchers working at this vanguard still face unprecedented challenges working with nonculturable organisms that possess some of the largest and most repetitive genomes now known in kingdom fungi. In this chapter, we provide an overview of the current status and special challenges of rust genomics, and we highlight how phylogenomics may provide new perspectives and answer long-standing questions regarding the biology of rust fungi.


Sujet(s)
Basidiomycota/génétique , Basidiomycota/physiologie , Génomique , Phylogenèse , Basidiomycota/classification , Basidiomycota/pathogénicité , Éléments transposables d'ADN , Génome fongique , Maladies des plantes/microbiologie , Plantes/microbiologie
18.
Mycologia ; 109(3): 408-421, 2017.
Article de Anglais | MEDLINE | ID: mdl-28636469

RÉSUMÉ

Macalpinomyces was established in 1977, with the type species M. eriachnes described from a specimen collected in northern Australia on the grass Eriachne sp. in 1855. Subsequently, M. eriachnes has been reported on more than 21 species of Eriachne in northern Australia. In this study, a polyphasic approach was employed to determine whether M. eriachnes masked cryptic diversity. On the basis of morphology, multilocus phylogeny, and coalescent methods of generalized mixed Yule-coalescent (GMYC) and Poisson tree processes (PTP) models, 26 specimens of Macalpinomyces on 13 species of Eriachne held in Australian herbaria were studied. Consequently, 10 new species of Macalpinomyces that satisfied the phylogenetic species recognition criteria are described.


Sujet(s)
Phylogenèse , Poaceae/microbiologie , Ustilaginales/classification , Ustilaginales/cytologie , Ustilaginales/génétique , Ustilaginales/isolement et purification , Australie , Analyse de regroupements , ADN fongique/composition chimique , ADN fongique/génétique , ADN ribosomique/composition chimique , ADN ribosomique/génétique , Espaceur de l'ADN ribosomique/composition chimique , Espaceur de l'ADN ribosomique/génétique , Gènes d'ARN ribosomique , Microscopie , ARN fongique/génétique , ARN ribosomique 18S/génétique , ARN ribosomique 28S/génétique , Analyse de séquence d'ADN
19.
IMA Fungus ; 7(2): 309-315, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27990337

RÉSUMÉ

Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis, Tolyposporella pachycarpa, Ustilago bouriquetii and U. maydis, occupy a unique phylogenetic position within the Ustilaginaceae. A previously introduced monotypic generic name typified by U. maydis, Mycosarcoma, is available to accommodate these species, which resolves one component of polyphyly for Ustilagos.lat. in Ustilaginaceae. An emended description of Mycosarcoma is provided to reflect the morphological synapomorphies of this monophyletic group. A specimen of Ustilago maydis that has had its genome sequenced is designated as a neotype for this species. Taxonomic stability will further be provided by a forthcoming proposal to conserve the name Uredo maydis over Lycoperdon zeae, which has priority by date, in order to preserve the well-known epithet maydis.

20.
IMA Fungus ; 7(1): 217-27, 2016 Jun.
Article de Anglais | MEDLINE | ID: mdl-27433447

RÉSUMÉ

The genomes of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica, and Penicillium freii DAOMC 242723 are presented in this genome announcement. These six genomes are from plant pathogens and otherwise economically important fungal species. The genome sizes range from 21 Mb in the case of Ceratocystiopsis minuta to 58 Mb for the basidiomycete Armillaria fuscipes. These genomes include the first reports of genomes for the genus Endoconidiophora. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these pathogens cause disease.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...