Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biomater Sci ; 2(10): 1521-34, 2014 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-26829566

RÉSUMÉ

Extracellular matrix (ECM) derived from mammalian tissues has been utilized to repair damaged or missing tissue and improve healing outcomes. More recently, processing of ECM into hydrogels has expanded the use of these materials to include platforms for 3-dimensional cell culture as well as injectable therapeutics that can be delivered by minimally invasive techniques and fill irregularly shaped cavities. At the cellular level, ECM hydrogels initiate a multifaceted host response that includes recruitment of endogenous stem/progenitor cells, regional angiogenesis, and modulation of the innate immune response. Unfortunately, little is known about the components of the hydrogel that drive these responses. We hypothesized that different components of ECM hydrogels could play distinctive roles in stem cell and macrophage behavior. Utilizing a well-characterized ECM hydrogel derived from urinary bladder matrix (UBM), we separated the soluble and structural components of UBM hydrogel and characterized their biological activity. Perivascular stem cells migrated toward and reduced their proliferation in response to both structural and soluble components of UBM hydrogel. Both components also altered macrophage behavior but with different fingerprints. Soluble components increased phagocytosis with an IL-1RA(high), TNFα(low), IL-1ß(low), uPA(low) secretion profile. Structural components decreased phagocytosis with a PGE2(high), PGF2α(high), TNFα(low), IL-1ß(low), uPA(low), MMP2(low), MMP9(low), secretion profile. The biologic activity of the soluble components was mediated by Notch and PI3K/Akt signaling, while the biologic activity of the structural components was mediated by integrins and MEK/ERK signaling. Collectively, these findings demonstrate that soluble and structural components of ECM hydrogels contribute to the host response but through different mechanisms.

2.
Biomaterials ; 33(1): 91-101, 2012 Jan.
Article de Anglais | MEDLINE | ID: mdl-21967802

RÉSUMÉ

The immune response is an important determinant of the downstream remodeling of xenogeneic biologic scaffolds in vivo. Pro-inflammatory responses have been correlated with encapsulation and a foreign body reaction, while anti-inflammatory reactions are associated with constructive remodeling. However, the bioactive and bioinductive molecules within the extracellular matrix (ECM) that induce this polarization are unclear, although it is likely that cellular remnants such as damage associated molecular patterns (DAMPs) retained within the scaffold may play a role. The present study investigated the immunomodulatory effects of common ECM scaffolds. Results showed that tissue source, decellularization method and chemical crosslinking modifications affect the presence of the well characterized DAMP - HMGB1. In addition, these factors were correlated with differences in cell proliferation, death, secretion of the chemokines CCL2 and CCL4, and up regulation of the pro-inflammatory signaling receptor toll-like receptor 4 (TLR4). Inhibition of HMGB1 with glycyrrhizin increased the pro-inflammatory response, increasing cell death and up regulating chemokine and TLR4 mRNA expression. The present study suggests the importance of HMGB1 and other DAMPS as bioinductive molecules within the ECM scaffold. Identification and evaluation of other ECM bioactive molecules will be an area of future interest for new biomaterial development.


Sujet(s)
Matrice extracellulaire/métabolisme , Structures d'échafaudage tissulaires , Animaux , Technique de Western , Lignée cellulaire tumorale , Chimiokine CCL2/métabolisme , Chimiokine CCL4/métabolisme , Test ELISA , Protéine HMGB1/métabolisme , Humains , Immunomodulation/physiologie , Souris , Rats , RT-PCR , Suidae , Ingénierie tissulaire , Récepteur de type Toll-4/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE