Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.187
Filtrer
1.
Int Wound J ; 21(8): e70017, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39107935

RÉSUMÉ

This study was to translate the Pieper-Zulkowski pressure ulcer knowledge test (PZ-PUKT) into Traditional Chinese and evaluate its psychometric properties as well as identify the predictors of knowledge on pressure injury. The PZ-PUKT was translated into Traditional Chinese (TC-PZ-PUKT), and its content validity was evaluated. A total of 296 nurses participated in this study and completed the 72-item TC-PZ-PUKT online. The reliability of the TC-PZ-PUKT was analysed by evaluating its internal consistency and test-retest reliability. Hierarchical regression was used to determine factors associated with TC-PZ-PUKT scores. Content validity was achieved with a score of 0.986. Internal consistency was observed to be reliable, with a Cronbach's alpha of 0.858. The mean knowledge score on the TC-PZ-PUKT was 72.5%, with a 1-week test-retest reliability of r = 0.849. Education level, certification as a wound specialist and self-learning through reading articles, books or guidelines on pressure injury were significantly associated with TC-PZ-PUKT scores. The TC-PZ-PUKT is a valid and reliable tool. Education level, certification as a wound specialist and self-learning regarding pressure injury are related to knowledge of pressure injury.


Sujet(s)
Connaissances, attitudes et pratiques en santé , Escarre , Psychométrie , Humains , Escarre/diagnostic , Psychométrie/méthodes , Psychométrie/instrumentation , Reproductibilité des résultats , Femelle , Mâle , Adulte , Enquêtes et questionnaires , Chine , Adulte d'âge moyen , Compétence clinique/statistiques et données numériques , Traductions , Peuples d'Asie de l'Est
2.
J Am Chem Soc ; 146(32): 22157-22165, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39102638

RÉSUMÉ

Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.

3.
Se Pu ; 42(8): 740-748, 2024 Aug.
Article de Chinois | MEDLINE | ID: mdl-39086242

RÉSUMÉ

Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 µg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 µg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 µg/kg) were 78.1%-118%, with the intra- and inter-day precisions of 0.2%-11.1% and 0.8%-8.7%, respectively. This method was applied in analyzing real samples, and PFASs including perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, and perfluorotridecanoic acid, were detected in all 11 samples evaluated. This method is simple, sensitive, and suitable for use in analyzing PFASs in fish samples.


Sujet(s)
Poissons , Fluorocarbones , Contamination des aliments , Spectrométrie de masse en tandem , Spectrométrie de masse en tandem/méthodes , Fluorocarbones/analyse , Animaux , Chromatographie en phase liquide à haute performance , Contamination des aliments/analyse , Caprylates/analyse , Acides alcanesulfoniques/analyse
4.
Int J Biol Macromol ; 277(Pt 3): 134296, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39094888

RÉSUMÉ

Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.

5.
J Fungi (Basel) ; 10(7)2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39057384

RÉSUMÉ

Based on phylogenetic analysis, Candolleomyces (Psathyrellaceae, Agaricales) was established with Psathyrella candolleana as the type species. The basidiomes range from small to large and are typically terrestrial, lignicolous, and rarely fimicolous. We analysed the Candolleomyces species collected during five years in China, and based on morphological and molecular data (nrITS, nrLSU, and tef-1α), we propose seven new Candolleomyces species viz. C. brevisporus, C. gyirongicus, C. lignicola, C. luridus, C. shennongdingicus, C. shennongjianus, and C. sichuanicus. Full descriptions, colour photographs, illustrations, phylogenetic analyses results, and comparisons with related Candolleomyces species of the new taxa are provided. This study enriches the species diversity of Candolleomyces in China.

6.
Nanotechnology ; 35(40)2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-38981451

RÉSUMÉ

Due to shortcomings such as poor homogeneity of Al doping, precisely controlling the thickness, inability to conformally deposit on high aspect ratio devices and high pinhole rate, the applications of Al-doped ZnO (AZO) nanomembrane in integrated optoelectronic devices are remarkably influenced. Here, we reportin situmonitoring during the atomic layer deposition (ALD) of AZO nanomembrane by using an integrated spectroscopic ellipsometer. AZO nanomembranes with different compositions were deposited with real-time and precise atomic level monitoring of the deposition process. We specifically investigate the half-reaction and thickness evolution during the ALD processes and the influence of the chamber temperature is also disclosed. Structural characterizations demonstrate that the obtained AZO nanomembranes without any post-treatment are uniform, dense and pinhole-free. The transmittances of the nanomembranes in visible range are >94%, and the optimal conductivity can reach up to 1210 S cm-1. The output of current research may pave the way for AZO nanomembrane to become promising in integrated optoelectronic devices.

7.
J Formos Med Assoc ; 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38977388

RÉSUMÉ

PURPOSE: In the health-care system within hospitals, Taiwanese patients usually play the role of passively cooperating with health-care professionals. Therefore, patients rarely make their own treatment decisions. This study evaluated the level of patient education and patient satisfaction in relation to empowerment level in Taiwan. METHODS: A cross-sectional survey by a self-administered structured questionnaire was carried out with 618 inpatients from the four hospitals. Statistical analyses were then conducted. Analysis of covariance and post-hoc comparison was used to compare differences between the level of patient empowerment, age, and education as covariates in the model. RESULTS: This study found that 21.2% and 35.6% of participants were highly empowered and well empowered, respectively. Years of education is a significant covariate in the counselling domain of patient education. Even after controlling for age and education level, the counselling, answer question and justifying action, providing information scores remain significant for all levels after adjusting for the effects of degree of patient empowerment. Patients with higher empowerment also having more-sufficient patient education, indicating a tendency toward higher patient satisfaction. Patient education and counselling practices in Taiwan's clinical practice could be improved to enhance patient empowerment and ensure health-care systems are person-centred. CONCLUSIONS: To move more toward highly patient empowerment, we suggest that health-care professionals advocate a patient-empowerment approach and to provide more counselling related to patients' illnesses and possible treatments.

8.
Chem Commun (Camb) ; 60(65): 8589-8592, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39045678

RÉSUMÉ

We report a novel and efficient method for the preparation of diarylmethyl sulfonamide derivatives through visible-light-induced sulfamoylation of para-quinone methides with sulfamoyl chlorides under mild, metal-free conditions. This protocol demonstrates excellent tolerance toward a wide range of functional groups, affording the corresponding products in moderate to high yields. Preliminary mechanism studies revealed that the excited photocatalyst rhodamine 6G* was mainly quenched by para-quinone methides and the generated diarylmethyl radical intermediates then underwent radical-radical cross-coupling with sulfamoyl radicals to yield the diarylmethyl sulfonamides.

9.
J Biol Chem ; 300(8): 107556, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39002683

RÉSUMÉ

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.

10.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38842635

RÉSUMÉ

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN par jonction d'extrémités , Histone , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histone/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Humains , Méthylation , Autoantigène Ku/métabolisme , Autoantigène Ku/génétique , Protéine A de réplication/métabolisme , Protéine A de réplication/génétique , Recombinaison homologue , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Réparation de l'ADN , Chromatine/métabolisme , Chromatine/génétique
11.
Environ Sci Technol ; 58(29): 13056-13064, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38900493

RÉSUMÉ

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.


Sujet(s)
Pluie , Caoutchouc , Villes , Polluants chimiques de l'eau/analyse , Surveillance de l'environnement , Chine
12.
J Transl Med ; 22(1): 596, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38926764

RÉSUMÉ

BACKGROUND: Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS: Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS: CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION: A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.


Sujet(s)
Néphrocarcinome , Prolifération cellulaire , Rétrocontrôle physiologique , Régulation de l'expression des gènes tumoraux , Tumeurs du rein , microARN , ARN circulaire , Humains , Néphrocarcinome/génétique , Néphrocarcinome/anatomopathologie , Néphrocarcinome/métabolisme , ARN circulaire/génétique , ARN circulaire/métabolisme , Tumeurs du rein/génétique , Tumeurs du rein/anatomopathologie , Tumeurs du rein/métabolisme , microARN/génétique , microARN/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Femelle , Adulte d'âge moyen , Mâle , Carcinogenèse/génétique , Carcinogenèse/anatomopathologie , Mouvement cellulaire/génétique , Protéine activatrice spécifique des lymphocytes B/métabolisme , Protéine activatrice spécifique des lymphocytes B/génétique , Oncogènes/génétique , Séquence nucléotidique , Évolution de la maladie , Invasion tumorale , Reproductibilité des résultats
13.
Biochem Biophys Res Commun ; 717: 150045, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38718572

RÉSUMÉ

The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.


Sujet(s)
Régulation négative , Complexe-2 cible mécanistique de la rapamycine , Proteasome endopeptidase complex , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitin-protein ligases , Ubiquitine , Complexe-2 cible mécanistique de la rapamycine/métabolisme , Complexe-2 cible mécanistique de la rapamycine/génétique , Proteasome endopeptidase complex/métabolisme , Protéolyse , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Ubiquitine/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Ubiquitination
14.
Polymers (Basel) ; 16(10)2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38794581

RÉSUMÉ

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.

15.
Plant Dis ; 2024 May 19.
Article de Anglais | MEDLINE | ID: mdl-38764344

RÉSUMÉ

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

16.
ACS Nano ; 18(20): 13150-13163, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38726816

RÉSUMÉ

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn-Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g-1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.

17.
Pharmacol Res ; 205: 107235, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38815879

RÉSUMÉ

Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1ß was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1ß and suggested that silencing USP7 may be a therapeutic strategy for DCM.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques , Homéostasie , Souris de lignée C57BL , Ubiquitin-specific peptidase 7 , Animaux , Humains , Mâle , Souris , Rats , Lignée cellulaire , Diabète expérimental/métabolisme , Diabète expérimental/génétique , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Cardiomyopathies diabétiques/génétique , Souris knockout , Mitochondries/métabolisme , Mitochondries du myocarde/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Ubiquitin-specific peptidase 7/métabolisme , Ubiquitin-specific peptidase 7/génétique
18.
Int J Cardiol ; 408: 132149, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38723908

RÉSUMÉ

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.


Sujet(s)
Animaux nouveau-nés , Souris knockout , Myocytes cardiaques , Ubiquitin-specific peptidase 7 , Animaux , Myocytes cardiaques/métabolisme , Myocytes cardiaques/anatomopathologie , Souris , Ubiquitin-specific peptidase 7/métabolisme , Ubiquitin-specific peptidase 7/génétique , Biogenèse des organelles , Dynamique mitochondriale/physiologie , Dynamique mitochondriale/génétique
19.
Front Oncol ; 14: 1369346, 2024.
Article de Anglais | MEDLINE | ID: mdl-38585007

RÉSUMÉ

Purpose: Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) exhibit phenotypic similarities with JAK/STAT-unmutated idiopathic erythrocytosis and thrombocytosis (IE/IT). We aimed to develop a clinical diagnostic model to discern MPN and IE/IT. Methods: A retrospective study was performed on 77 MPN patients and 32 IE/IT patients in our center from January 2018 to December 2023. We investigated the role of hemogram, cytokine and spleen size in differentiating MPN and IE/IT among newly onset erythrocytosis and thrombocytosis patients. Independent influencing factors were integrated into a nomogram for individualized risk prediction. The calibration and discrimination ability of the model were evaluated by concordance index (C-index), calibration curve. Results: MPN had significantly higher TNF-α level than IE/IT, and the TNF-α level is correlated with MF-grade. Multivariable analyses revealed that TNF-α, PLT count, age, size of spleen were independent diagnostic factors in differentiating MPN and IE/IT. Nomograms integrated the above 4 factors for differentiating MPN and IE/IT was internally validated and had good performance, the C-index of the model is 0.979. Conclusion: The elevation of serum TNF-α in MPN patients is of diagnostic significance and is correlated with the severity of myelofibrosis. The nomogram incorporating TNF-α with age, PLT count and spleen size presents a noteworthy tool in the preliminary discrimination of MPN patients and those with idiopathic erythrocytosis or thrombocytosis. This highlights the potential of cytokines as biomarkers in hematologic disorders.

20.
Huan Jing Ke Xue ; 45(5): 2715-2726, 2024 May 08.
Article de Chinois | MEDLINE | ID: mdl-38629535

RÉSUMÉ

Riparian zones are typical fragile and sensitive ecological areas. Fluctuations in water level are the main factor affecting the soil environment in these zones, and vegetation restoration is considered an important means of soil conservation there. However, the interactive effects of water level fluctuations and vegetation restoration on the soil microbial community structure in the reservoir riparian zone remain unclear. Therefore, we selected abandoned grassland and artificial forestland at different water level elevations as research objects in the riparian zone of the Three Gorges Reservoir. We used 16S rRNA high-throughput sequencing technology to explore the composition and diversity of soil prokaryotic microbial communities and investigated the main environmental factors driving the soil microbial community structure. The results showed that the α diversity of soil prokaryotes was the highest at the low water level of the riparian zone. The Pielou_e index, Shannon index, and Simpson index at the 163 m elevation were significantly higher than those at the 168 m elevation, and the Chao1 index and Shannon index were significantly higher than those at the 173 m elevation. However, no significant difference was found in the soil microbial community α diversity between abandoned grassland and artificial forestland. At the same time, water level fluctuations and vegetation restoration had significant effects on the community composition of soil prokaryotic microorganisms, and there were significant differences in biomarker categories in different study sites. Notably, the effects of vegetation restoration types on the soil prokaryotic microbial community structure were stronger than that of water level fluctuations. In addition, the results of hierarchical segmentation showed that soil pH was the main driving factor for the change in soil prokaryotic microbial community structure in the Three Gorges Reservoir. These results deepen our understanding of the variations in microbial community structure in the reservoir riparian zone and provide scientific reference for the restoration and reconstruction of the riparian zone ecosystem.


Sujet(s)
Microbiote , Sol , Sol/composition chimique , Écosystème , Eau , ARN ribosomique 16S , Forêts , Microbiologie du sol
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE