Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Rev E ; 109(3-2): 039901, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38632824

RÉSUMÉ

This corrects the article DOI: 10.1103/PhysRevE.106.044801.

2.
Phys Rev E ; 108(4-1): 044801, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37978703

RÉSUMÉ

We study the interface representation of the contact process at its directed-percolation critical point, where the scaling properties of the interface can be related to those of the original particle model. Interestingly, such a behavior happens to be intrinsically anomalous and more complex than that described by the standard Family-Vicsek dynamic scaling Ansatz of surface kinetic roughening. We expand on a previous numerical study by Dickman and Muñoz [Phys. Rev. E 62, 7632 (2000)10.1103/PhysRevE.62.7632] to fully characterize the kinetic roughening universality class for interface dimensions d=1,2, and 3. Beyond obtaining scaling exponent values, we characterize the interface fluctuations via their probability density function (PDF) and covariance, seen to display universal properties which are qualitatively similar to those recently assessed for the Kardar-Parisi-Zhang (KPZ) and other important universality classes of kinetic roughening. Quantitatively, while for d=1 the interface covariance seems to be well described by the KPZ, Airy_{1} covariance, no such agreement occurs in terms of the fluctuation PDF or the scaling exponents.

3.
Phys Rev E ; 106(4-1): 044801, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-36397471

RÉSUMÉ

We have studied the kinetic roughening behavior of the fronts of coffee-ring aggregates via extensive numerical simulations of the off-lattice model considered for this context [Dias et al., Soft Matter 14, 1903 (2018)1744-683X10.1039/C7SM02136D]. This model describes ballistic aggregation of patchy colloids and depends on a parameter r_{AB} which controls the affinity of the two patches, A and B. Suitable boundary conditions allow us to elucidate a discontinuous pinning-depinning transition at r_{AB}=0, with the front displaying intrinsic anomalous scaling, but with unusual exponent values α≃1.2, α_{loc}≃0.5, ß≃1, and z≃1.2. For 00.01 and the system suffers a strong crossover dominated by the r_{AB}=0 behavior for r_{AB}≤0.01. A detailed analysis of correlation functions shows that the aggregate fronts are always in the moving phase for 0

4.
Phys Rev E ; 105(5-1): 054801, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35706198

RÉSUMÉ

We have used kinetic Monte Carlo (kMC) simulations of a lattice gas to study front fluctuations in the spreading of a nonvolatile liquid droplet onto a solid substrate. Our results are consistent with a diffusive growth law for the radius of the precursor layer, R∼t^{δ}, with δ≈1/2 in all the conditions considered for temperature and substrate wettability, in good agreement with previous studies. The fluctuations of the front exhibit kinetic roughening properties with exponent values which depend on temperature T, but become T independent for sufficiently high T. Moreover, strong evidence of intrinsic anomalous scaling has been found, characterized by different values of the roughness exponent at short and large length scales. Although such a behavior differs from the scaling properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class, the front covariance and the probability distribution function of front fluctuations found in our kMC simulations do display KPZ behavior, agreeing with simulations of a continuum height equation proposed in this context. However, this equation does not feature intrinsic anomalous scaling, at variance with the discrete model.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE