Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Food Microbiol ; 110: 104166, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36462821

RÉSUMÉ

This study evaluated Listeria monocytogenes cross-contamination between inoculated fruits, waxing brush, and uninoculated fruits during apple wax coating and investigated the fate of L. monocytogenes on wax-coated apples introduced via different wax coating schemes. There were 1.8-1.9 log10 CFU/apple reductions of L. monocytogenes on PrimaFresh 360, PrimaFresh 606, or Shield-Brite AP-450 coated apples introduced before wax coating after 6 weeks of ambient storage (22 °C and ambient relative humidity). L. monocytogenes showed a similar trend (P > 0.05) on waxed apples under cold storage (1 °C and ∼ 90% relative humidity); there were 1.8-2.0 log10 CFU/apple reductions of L. monocytogenes during the 12 weeks of cold storage regardless of wax coating type. For cross-contamination study, a waxing brush was used to wax one inoculated apple (6.2 log10 CFU/apple); then, this brush was used to wax five uninoculated apples in a sequence. There were 3.7, 3.5, 3.3, 2.9, and 2.7 log10 CFU/apple and 3.6 log10 CFU/brush of L. monocytogenes transferred from the inoculated apple to uninoculated apple 1 to apple 5, and the waxing brush, respectively. The die-off rate of L. monocytogenes on wax-coated apples contaminated during wax coating was not significantly different from that contaminated on apples before wax coating, and 1.8-1.9 log10 CFU/apple reductions were observed during the 12 weeks of cold storage. The application of wax coatings, regardless of wax coating type, did not impact the survival of endogenous yeasts and molds on apples during ambient or cold storage. L. monocytogenes transferred onto waxing brushes during wax coating remained relatively stable during the 2-week ambient holding. Fungicide application during wax coating reduced (P < 0.05) yeast and mold counts but had a minor impact (P > 0.05) on the survival of L. monocytogenes on apples after 12 weeks of cold storage. Collectively, this study indicated that a high cross-contamination risk of L. monocytogenes during apple waxing, and L. monocytogenes on wax-coated apples introduced via different scenarios is stable during subsequent cold storage, highlighting the need for potential intervention strategies to control L. monocytogenes on wax-coated apples.


Sujet(s)
Fongicides industriels , Listeria monocytogenes , Malus , Cires/pharmacologie , Fruit , Saccharomyces cerevisiae
2.
J Food Prot ; 85(1): 133-141, 2022 01 01.
Article de Anglais | MEDLINE | ID: mdl-34499733

RÉSUMÉ

ABSTRACT: Recent apple-related recall and outbreak events have exposed a need for better food safety controls along the supply chain. Following harvest, apples can be stored under a controlled atmosphere for up to 1 year after harvest before packing and distribution, making the crop susceptible to many opportunities for contamination that increase the quantity of postharvest losses. Botrytis cinerea and Penicillium expansum cause significant rot-associated losses to the apple industry. These fungi can colonize and destroy apple tissue as storage duration increases, which may also impact the growth of saprophytic foodborne pathogens like Listeria monocytogenes. Thus, the objective of this study was to observe population changes of Listeria innocua as a surrogate for L. monocytogenes on apples inoculated with B. cinerea or P. expansum under long-term controlled atmosphere cold storage conditions to identify the effect of postharvest mold growth on growth patterns of a microorganism relevant to food safety. 'Gala' and 'WA 38' apples (n = 1,080) were harvested, treated with pyrimethanil, and inoculated with L. innocua only or with L. innocua and one of the mold species on wounded and unwounded portions of the apple equator. Apples were treated with 1-methylcyclopropene and stored at a controlled atmosphere (2 kPa O2, 1 kPa CO2, 1°C) for 1 week and 1, 3, 6, 9, and 11 months before enumeration. After 3 months, L. innocua consistently fell below the limit of detection (2.35 Log CFU/g), and samples were enriched following a modified Bacteriological Analytical Manual method with PCR confirmation. Listeria persistence was dependent on the storage duration and type of fungal contamination (P ≤ 0.05). Surface wounding may impact these trends, depending on the apple variety. Prevalence of L. innocua was greater in Gala apples. Future studies should more closely examine the interactions on the fruit surface that occur during the seemingly critical time frame of 3 to 6 months in storage.


Sujet(s)
Listeria , Malus , Atmosphère , Champignons , Malus/microbiologie
3.
Food Microbiol ; 102: 103922, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-34809948

RÉSUMÉ

This study evaluated the impact of 1-methylcyclopropene (1-MCP), an ethylene synthesis inhibitor, followed by long-term commercial cold storage with low-dose gaseous ozone on the microbiological safety and quality of fresh apples. Granny Smith apples were inoculated with or without Listeria innocua, treated with or without 1.0 mg/L 1-MCP for 24 h, then subjected to commercial cold storage conditions including refrigerated air (RA, 0.6 °C, control), controlled atmosphere (CA, 2% O2, 1% CO2, 0.6 °C), and CA with 51-87 µg/L ozone gas for up to 36 weeks. RA storage reduced L. innocua on apples by up to 3.6 log10 CFU/apple. CA had no advantage over RA in controlling Listeria. Continuous ozone gas application resulted in an additional ∼2.0 log10 CFU/apple reduction of L. innocua (total reduction up to 5.7 log10 CFU/apple) and suppressed native bacteria and fungi. Treatment with 1-MCP had a minor impact on survival of L. innocua or background microbiota on apples, while it significantly delayed fruit ripening and reduced the incidence of superficial scald and internal browning. In summary, 1-MCP treatment followed by CA storage with low-dose continuous ozone gas can effectively control Listeria on fresh apples and delay fruit ripening.


Sujet(s)
Cyclopropanes/pharmacologie , Stockage des aliments , Fruit/microbiologie , Listeria , Malus , Ozone , Malus/microbiologie , Ozone/pharmacologie
4.
Front Microbiol ; 12: 712757, 2021.
Article de Anglais | MEDLINE | ID: mdl-34659142

RÉSUMÉ

This study aimed to investigate the effects of low-dose continuous ozone gas in controlling Listeria innocua and quality attributes and disorders of Red Delicious apples during long-term commercial cold storage. Red Delicious apples were inoculated with a three-strain L. innocua cocktail at ∼6.2 log10 CFU/apple, treated with or without 1-methylcyclopropene, and then subjected to controlled atmosphere (CA) storage with or without continuous gaseous ozone in a commercial facility for 36 weeks. Uninoculated Red Delicious apples subjected to the above storage conditions were used for yeast/mold counts and quality attributes evaluation. The 36 weeks of refrigerated air (RA) or CA storage caused ∼2.2 log10 CFU/apple reduction of L. innocua. Ozone gas application caused an additional > 3 log10 CFU/apple reduction of L. innocua compared to RA and CA storage alone. During the 36-week CA storage, low-dose continuous gaseous ozone application significantly retarded the growth of yeast/mold, delayed apple firmness loss, and had no negative influence on ozone burn, lenticel decay, russet, CO2 damage, superficial scald, and soft scald of Red Delicious apples compared to CA-alone storage. In summary, the application of continuous low-dose gaseous ozone has the potential to control Listeria on Red Delicious apples without negatively influencing apple quality attributes.

5.
Food Microbiol ; 76: 21-28, 2018 Dec.
Article de Anglais | MEDLINE | ID: mdl-30166144

RÉSUMÉ

This study evaluated the fate of Listeria innocua, a non-pathogenic species closely related to Listeria monocytogenes, on Fuji apple fruit surfaces during commercial cold storage with and without continuous low doses of gaseous ozone. Unwaxed Fuji apples of commercially acceptable maturity were inoculated with 6.0-7.0 Log10 CFU L. innocua/apple, and subjected to refrigerated air (RA, 33 °F), controlled atmosphere (CA, 33 °F, 2% O2, 1% CO2), or CA with low doses of ozone gas (50.0 -87.0 ppb ) storage in a commercial facility for 30 weeks. A set of uninoculated apples was simultaneously subjected to the above storage conditions for total plate count and yeasts and molds enumeration. L. innocua survival under RA and CA storage was similar, which led to 2.5-3.0 Log10 CFU/apple reduction during storage. Continuous gaseous ozone application decreased L. innocua population on Fuji apples to ∼1.0 Log10 CFU/apple after 30-week storage, and suppressed apple native flora. CA storage delayed apple fruit ripening through reduction of apple firmness and titratable acidity loss, and low dose gaseous ozone application had no negative influence on apple visual quality, including both external and internal disorders. In summary, L. innocua decreased on Fuji apple surfaces during commercial long-term RA and CA storage. Ozone gas has the potential to be used as a supplemental intervention method to control Listeria spp. and to ensure fresh apple safety.


Sujet(s)
Stockage des aliments/méthodes , Listeria/effets des médicaments et des substances chimiques , Malus/microbiologie , Viabilité microbienne/effets des médicaments et des substances chimiques , Oxydants photochimiques/pharmacologie , Ozone/pharmacologie , Basse température , Numération de colonies microbiennes , Sécurité des produits de consommation , Microbiologie alimentaire/méthodes , Conservation aliments/méthodes , Malus/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...