Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 424
Filtrer
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3857-3867, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39099359

RÉSUMÉ

The study investigated the protective effect and mechanism of 2-phenylethyl-beta-glucopyranoside(Phe) from Huaizhong No.1 Rehmannia glutinosa on hypoxic pulmonary hypertension(PH), aiming to provide a theoretical basis for clinical treatment of PAH. Male C57BL/6N mice were randomly divided into normal group, model group, positive drug(bosentan, 100 mg·kg~(-1)) group, and low-and high-dose Phe groups(20 and 40 mg·kg~(-1)). Except for the normal group, all other groups were continuously subjected to model induction in a 10% hypoxic environment for 5 weeks, with oral administration for 14 days starting from the 3rd week. The cardiopulmonary function, right ventricular pressure, cough and asthma index, lung injury, cell apoptosis, oxidative stress-related indicators, immune cells, and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/hypoxic inducible factor 1α(HIF-1α) pathway-related proteins or mRNA levels were examined. Furthermore, hypoxia-induced pulmonary arterial smooth muscle cell(PASMC) were used to further explore the mechanism of Phe intervention in PH combined with PI3K ago-nist(740Y-P). The results showed that Phe significantly improved the cardiopulmonary function of mice with PH, decreased right ventricular pressure, cough and asthma index, and lung injury, reduced cell apoptosis, oxidative stress-related indicators, and nuclear levels of phosphorylated Akt(p-Akt) and phosphorylated mTOR(p-mTOR), inhibited the expression levels of HIF-1α and PI3K mRNA and proteins, and maintained the immune cell homeostasis in mice. Further mechanistic studies revealed that Phe significantly reduced the viability and migration ability of hypoxia-induced PASMC, decreased the expression of HIF-1α and PI3K proteins and nuc-lear levels of p-Akt and p-mTOR, and this effect was blocked by 740Y-P. Therefore, it is inferred that Phe may exert anti-PH effects by alleviating the imbalance of oxidative stress and apoptosis in lung tissues and regulating immune levels, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR/HIF-1α pathway. This study is expected to provide drug references and research ideas for the treatment of PH.


Sujet(s)
Glucosides , Hypertension pulmonaire , Sous-unité alpha du facteur-1 induit par l'hypoxie , Hypoxie , Souris de lignée C57BL , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Rehmannia , Sérine-thréonine kinases TOR , Animaux , Mâle , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Souris , Hypertension pulmonaire/traitement médicamenteux , Hypertension pulmonaire/physiopathologie , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/génétique , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Rehmannia/composition chimique , Phosphatidylinositol 3-kinases/métabolisme , Phosphatidylinositol 3-kinases/génétique , Glucosides/pharmacologie , Hypoxie/traitement médicamenteux , Hypoxie/physiopathologie , Hypoxie/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Humains , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/administration et posologie , Médicaments issus de plantes chinoises/composition chimique , Apoptose/effets des médicaments et des substances chimiques
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 402-408, 2024 Jun.
Article de Chinois | MEDLINE | ID: mdl-38953264

RÉSUMÉ

There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.


Sujet(s)
Éveil , Cortex préfrontal , Aire tegmentale ventrale , Cortex préfrontal/physiologie , Aire tegmentale ventrale/physiologie , Éveil/physiologie , Humains , Animaux , Voies nerveuses/physiologie
3.
Heliyon ; 10(12): e32652, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38994040

RÉSUMÉ

Aging causes degenerative changes in organs, leading to a decline in physical function. Over the past two decades, researchers have made significant progress in understanding the rejuvenating effects of young blood on aging organs, benefiting from heterochronic parabiosis models that connect the blood circulation of aged and young rodents. It has been discovered that young blood can partially rejuvenate organs in old animals by regulating important aging-related signaling pathways. Clinical trials have also shown the effectiveness of young blood in treating aging-related diseases. However, the limited availability of young blood poses a challenge to implementing anti-aging therapies on a large scale for older individuals. As a promising alternative, scientists have identified some specific anti-aging circulating factors in young blood that have been shown to promote organ regeneration, reduce inflammation, and alleviate fibrosis associated with aging in animal experiments. While previous reviews have focused primarily on the effects and mechanisms of circulating factors on aging, it is important to acknowledge that studying the rejuvenating effects and mechanisms of young blood has been a significant source of inspiration in this field, and it will continue to be in the future. In recent years, new findings have emerged, further expanding our knowledge in this area. This review aims to summarize the rejuvenating effects and mechanisms of young blood and circulating factors, discussing their similarities and connections, addressing discrepancies in previous studies, outlining future research directions, and highlighting the potential for clinical translation in anti-aging interventions.

4.
Chemosphere ; 363: 142800, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38977249

RÉSUMÉ

Microbial fuel cells (MFC) are emerging energy-efficient systems for copper (Cu) electrowinning from waste streams by coupling it with anodic oxidation of organics in wastewater. However, there is a lack of research examining scalable electrocatalysts for Cu electrowinning at low cathodic overpotentials in highly saline catholytes often found in e-waste leachates. The challenge of developing resilient anodic biofilms that withstand the antagonistic effects of ions migrating from catholytes in saline MFC also needs to be addressed. In this study, polypyrrole (PPy) cathodic electrocatalysts were developed and coupled with a robust halophilic anodic biofilm in MFC to improve the kinetics of Cu electrowinning from acidic chloride-based catholytes. Electrochemical characterisation of these cathodes revealed shuttling of electrons by redox-active PPy via the formation of intermediate Cu+-complexes as an energy-efficient pathway for producing metallic Cu. High power densities ranging from 0.63 ± 0.17 to 0.73 ± 0.05 W m-2 were achieved with undoped-PPy and phytic acid doped-PPy cathodes with simultaneous recovery of ∼97% Cu. These electrocatalysts also exhibited low charge transfer resistance (3-8 mΩ m2) that met the requisites for scalable cathodes in MFC. However, a decrease in the efficiency of PPy cathodes was observed over 5 d due to competing reactions at their interfaces, including re-oxidation of deposited Cu and cathodic corrosion, with further studies suggested to enhance their corrosion resistance. Nonetheless, integrating PPy electrocatalysts for Cu electrowinning in saline MFC has advanced its outlooks as an energy-efficient downstream process for urban mining of Cu from e-waste.

5.
Article de Anglais | MEDLINE | ID: mdl-39073616

RÉSUMÉ

CONTEXT/OBJECTIVE: Fetuin-B is a hepatokine/adipokine implicated in glucose homeostasis and lipid metabolism. We sought to assess whether cord blood fetuin-B levels are altered in gestational diabetes mellitus (GDM) and the association with fetal growth factors and lipids. STUDY DESIGN, POPULATION, AND OUTCOMES: In a nested case-control study of 153 pairs of neonates of mothers with GDM and euglycemic pregnancies in the Shanghai Birth Cohort, we assessed cord blood fetuin-B in relation to fetal growth factors and lipids [high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterols (TC) and triglycerides (TG)]. RESULTS: Cord blood fetuin-B concentrations were higher in the newborns of GDM vs. euglycemic mothers (mean ± SD: 2.35±0.96 vs 2.05±0.73 mg/L, P=0.012), and were positively correlated with LDL (r=0.239, P<0.0001), TC (r=0.230, P=0.0001), insulin-like growth factor-Ⅰ [IGF-Ⅰ (r=0.137, P=0.023)] and IGF-Ⅱ (r=0.148, P=0.014) concentrations. Similar associations were observed adjusting for maternal and neonatal characteristics. CONCLUSIONS: The study is the first to demonstrate that fetuin-B levels are elevated in fetal life in GDM, and that fetuin-B affects lipid metabolic health during fetal life in humans. The secretion of fetuin-B appears to be related to the secretion of insulin-like growth factors (IGF-Ⅰ and IGF-Ⅱ).

6.
Food Res Int ; 191: 114725, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39059921

RÉSUMÉ

Fish are crucial for the fishing industry and essential nutrient provision, including lipids. This study employed a high-throughput lipidomic approach to evaluate and contrast the lipid profiles of three marine fish species (P. crocea, S. fuscens, and C. saira) and one freshwater species (H. molitrix) across head, muscle, and viscera. Over 1000 molecular lipid species across 17 subclasses were identified. Notably, acylated monogalactosyldiacylglycerol (acMGDG) was detected for the first time in these species, with a high prevalence of saturated fatty acids (44.7 %-87.7 %). Glycerolipids (67.7 - 86.3 %) and PLs (10.7 - 31.8 %) were identified as the dominant lipid classes. Marine fish muscles displayed higher PL content than freshwater species, and P. crocea viscera contained over 30 % PLs of total lipids. In particular, ether phosphatidyl ethanolamine incorporated more DHA than ether phosphatidylcholine. The viscera of four fish species also exhibited a significant abundance of diacylglycerol (DG), indicating their potential as functional lipid sources. Multivariate analysis identified triglyceride (TG) (59:13), DG (16:1/22:5), and MGDG (16:0/18:2) as potential biomarkers for differentiating among fish anatomical parts. This study deepens the understanding of the nutritional values of these fish, providing guidance for consumer dietary choices and paving the way for transforming previously underutilized by-products into resources with high-value potential.


Sujet(s)
Poissons , Lipidomique , Lipides , Spectrométrie de masse en tandem , Animaux , Lipides/analyse , Produits de la mer/analyse , Muscles/composition chimique , Acides gras/analyse , Triglycéride/analyse , Galactolipides/analyse , Diglycéride/analyse
7.
J Agric Food Chem ; 72(29): 16312-16322, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-38985073

RÉSUMÉ

Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid ß-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.


Sujet(s)
Rein , Souris de lignée C57BL , Obésité , Phospholipides , Concombres de mer , Spectrométrie de masse MALDI , Spectrométrie de masse en tandem , Animaux , Concombres de mer/composition chimique , Concombres de mer/métabolisme , Souris , Phospholipides/métabolisme , Phospholipides/composition chimique , Rein/métabolisme , Rein/composition chimique , Spectrométrie de masse en tandem/méthodes , Mâle , Spectrométrie de masse MALDI/méthodes , Chromatographie en phase liquide à haute performance/méthodes , Obésité/métabolisme , Humains , Alimentation riche en graisse/effets indésirables , Souris obèse , Maladies du rein/métabolisme
8.
Plant Sci ; 347: 112182, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39019090

RÉSUMÉ

Photosynthesis is the main source of energy for plants to sustain growth and development. Abnormalities in photosynthesis may cause defects in plant development. The elaborate regulatory mechanism underlying photosynthesis remains unclear. In this study, we identified a natural mutant from the Greater Khingan Mountains and named it as "1-T". This mutant had variegated leaf with irregular distribution of yellow and green. Chlorophyll contents and photosynthetic capacity of 1-T were significantly reduced compared to other poplar genotypes. Furthermore, a transcriptome analysis revealed 3269 differentially expressed genes (DEGs) in 1-T. The products of the DEGs were enriched in photosystem I and photosystem II. Three motifs were significantly enriched in the promoters of these DEGs. Yeast one-hybrid, Electrophoretic mobility shift assays and tobacco transient transformation experiments indicated that PdGLKs may bind to the three motifs. Further analysis indicated that these photosystem related genes were also significantly down-regulated in PdGLK-RNAi poplars. Therefore, we preliminarily concluded that the down-regulation of PdGLKs in 1-T may affect the expression of photosystem-related genes, resulting in abnormal photosystem development and thus affecting the growth and development. Our results provide new insights into the molecular mechanism of photosynthesis regulating plant growth.

9.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3619-3626, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39041134

RÉSUMÉ

The intervention effect of astragaloside Ⅳ(AS-Ⅳ) on atherosclerosis in apolipoprotein E gene knockout(ApoE)~(-/-) mice was observed based on the nuclear factor erythroid-2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/glutathione peroxidase 4(GPX4) signaling pathway to explore the potential mechanism of AS-Ⅳ in improving ferroptosis in atherosclerotic mice. This study established an atherosclerosis mouse model by feeding them a high-fat diet. After modeling for 8 weeks, ApoE~(-/-) mice were randomly divided into the model group, AS-Ⅳ group, AS-Ⅳ+Nrf2 inhibitor(ML385) group, and ferrostatin-1(Fer-1) group. Additionally, a blank control group was also established. Corresponding drugs were administered via intraperitoneal injection, with the control group receiving an equivalent amount of normal saline injection as the model group. After the experiment, serum biochemical levels were measured using an automatic blood lipid analyzer, hematoxylin-eosin(HE) staining was used to observe morphological changes in aortic sinus tissues, colorimetric methods were used to detect levels of ferrous ion(Fe~(2+)), malondialdehyde(MDA), glutathione(GSH), and superoxide dismutase(SOD) in mouse serum, immunofluorescence was used to observe the expressions of ferritin heavy chain 1(FTH1) and ferritin light chain(FTL) proteins in the aortic sinus of mice, Western blot was used to detect the protein levels of Nrf2, HO-1, and GPX4 in mouse aortic tissues, and transmission electron microscopy was used to observe ultrastructural changes in aortic tissues. RESULTS:: showed that compared to the control group, the model group of mice had significantly increased calcification and plaque deposition areas in the aortic sinus, increased mitochondrial membrane density, decreased or disappeared mitochondrial cristae, elevated levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), Fe~(2+), and MDA, decreased levels of high-density lipoprotein cholesterol(HDL-C), SOD, and GSH, and significant inhibition of Nrf2, HO-1, GPX4 proteins, as well as iron storage proteins FTH1 and FTL expressions in the aorta. Compared to the model group, AS-Ⅳ treatment resulted in decreased serum TC, TG, LDL-C, Fe~(2+), and MDA levels, increased HDL-C, SOD, and GSH levels, increased expressions of Nrf2, HO-1, and GPX4 proteins, and iron storage proteins FTH1 and FTL, and significant improvement in aortic tissue morphology. Compared to the AS-Ⅳ group, the Nrf2 inhibitor ML385 could reverse the therapeutic effect of AS-Ⅳ on atherosclerosis mice. These findings suggest that AS-Ⅳ can inhibit ferroptosis and improve atherosclerosis in ApoE~(-/-) mice, and its mechanism of action may be related to the regulation of the Nrf2/HO-1/GPX4 signaling pathway.


Sujet(s)
Apolipoprotéines E , Athérosclérose , Ferroptose , Heme oxygenase-1 , Facteur-2 apparenté à NF-E2 , Phospholipid hydroperoxide glutathione peroxidase , Saponines , Triterpènes , Animaux , Facteur-2 apparenté à NF-E2/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Athérosclérose/traitement médicamenteux , Athérosclérose/métabolisme , Athérosclérose/génétique , Souris , Ferroptose/effets des médicaments et des substances chimiques , Saponines/pharmacologie , Triterpènes/pharmacologie , Apolipoprotéines E/génétique , Mâle , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Heme oxygenase-1/métabolisme , Heme oxygenase-1/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Souris knockout , Humains , Souris de lignée C57BL
10.
ACS Appl Mater Interfaces ; 16(31): 41487-41494, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39001811

RÉSUMÉ

Composite electrolytes have been accepted as the most promising species for solid-state batteries, exhibiting the synergistic advantages of solid polymer electrolytes (SPEs) and solid ceramic electrolytes (SCEs). Unfortunately, the interrupted Li+ conduction across the SPE and SCE interface hinders the ionic conductivity improvement of composite electrolytes. In our study on a ceramic-rich composite electrolyte (CRCE) membrane composed of borate polyanion-based lithiated poly(vinyl formal) (LiPVFM) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) particles, it is found that the strong interaction between the polyanions in LiPVFM and LATP particles results in a uniform distribution of ceramic particles at a high proportion of 50 wt % and good robustness of the electrolyte membrane with a Young's modulus of 9.20 GPa. More importantly, ab initio molecular dynamics simulation and experimental results demonstrate that Li+ conduction across the SPE and SCE interface is induced by the polyanion-based polymer due to its high lithium-ion transference number and similar Li+ diffusion coefficient with the SCE. Therefore, the unblocked Li+ conduction among ceramic particles dominates in the CRCE membrane with a high ionic conductivity of 6.60 × 10-4 S cm-1 at 25 °C, a lithium-ion transference number of 0.84, and a wide electrochemical stable window of 5.0 V (vs Li/Li+). Consequently, the high nickel ternary cathode LiNi0.8Mn0.1Co0.1O2-based batteries with CRCE deliver a high-rate capability of 135.08 mAh g-1 at 1.0 C and a prolonged cycle life of 100 cycles at 0.2 C between 3.0 and 4.3 V. The polyanion-induced Li+ conduction across the interface sheds new light on solving composite electrolyte problems for solid-state batteries.

11.
J Agric Food Chem ; 72(30): 17072-17083, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39022817

RÉSUMÉ

Microalgae, integral to marine ecosystems for their rich nutrient content, notably lipids and proteins, were investigated by using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF-MS/MS). This study focused on lipid composition in three commonly used microalgae species (Spirulina platensis, Chlorella vulgaris, and Schizochytrium limacinum) for functional food applications. The analysis unveiled more than 700 lipid molecular species, including glycolipids (GLs), phospholipids (PLs), sphingolipids (SLs), glycerolipids, and betaine lipids (BLs). GLs (19.9-64.8%) and glycerolipids (24.1-70.4%) comprised the primary lipid. Some novel lipid content, such as acylated monogalactosyldiacylglycerols (acMGDG) and acylated digalactosyldiacylglycerols (acDGDG), ranged from 0.62 to 9.68%. The analysis revealed substantial GLs, PLs, and glycerolipid variations across microalgae species. Notably, S. platensis and C. vulgaris displayed a predominance of fatty acid (FA) 18:2 and FA 18:3 in GLs, while S. limacinum exhibited a prevalence of FA 16:0, collectively constituting over 60% of the FAs of GLs. In terms of PLs and glycerolipids, S. platensis and C. vulgaris displayed elevated levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA), whereas S. limacinum exhibited a significant presence of docosahexaenoic acid (DHA). Principal component analysis (PCA) revealed MGDG (16:0/18:1), DG (16:0/22:5), Cer (d18:1/20:0), and LPC (16:1) as promising lipid markers for discriminating between these microalgae samples. This study contributes to a comprehensive understanding of lipid profiles in three microalgae species, emphasizing their distinct biochemical characteristics and potentially informing us of their high-value utilization in the food industry.


Sujet(s)
Lipidomique , Lipides , Microalgues , Spectrométrie de masse en tandem , Microalgues/composition chimique , Microalgues/classification , Microalgues/métabolisme , Spectrométrie de masse en tandem/méthodes , Lipidomique/méthodes , Lipides/analyse , Lipides/composition chimique , Chlorella vulgaris/composition chimique , Chlorella vulgaris/métabolisme , Chlorella vulgaris/classification , Straménopiles/composition chimique , Straménopiles/classification , Straménopiles/métabolisme , Chromatographie en phase inverse/méthodes , Chromatographie en phase liquide à haute performance
12.
ACS Appl Mater Interfaces ; 16(30): 39079-39089, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39021338

RÉSUMÉ

For chronic wounds, frequent replacement of bandages not only increases the likelihood of secondary damage and the risk of cross infection but also wastes medication. Therefore, in situ real-time monitoring of the concentrations of residual drugs in bandages is crucial. Here, we propose a novel strategy that combines a triboelectric nanogenerator (TENG) with medical bandages to develop a smart bandage based on zeolite imidazolate framework TENG. During the process of wound healing, the electrical output of TENG changes with the continuous release of drugs. Based on the correlation between the electrical signal of TENG and drug concentration, the concentration of residual drugs in the bandage can be monitored in real-time in situ, guiding medical staff to replace the bandage at the most appropriate time. The smart bandage based on TENG provides a new strategy for in situ real-time monitoring of drug concentration and also provides an ideal and feasible solution for the field of biomedical drug sensing.


Sujet(s)
Bandages , Zéolites/composition chimique , Animaux , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Humains , Nanotechnologie/instrumentation , Surveillance des médicaments/instrumentation , Surveillance des médicaments/méthodes , Réseaux organométalliques/composition chimique
13.
J Magn Reson Imaging ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886922

RÉSUMÉ

BACKGROUND: Restriction spectrum imaging (RSI), as an advanced quantitative diffusion-weighted magnetic resonance imaging technique, has the potential to distinguish primary benign and malignant lung lesions. OBJECTIVE: To explore how well the tri-compartmental RSI performs in distinguishing primary benign from malignant lung lesions compared with diffusion-weighted imaging (DWI), and to further explore whether positron emission tomography/magnetic resonance imaging (PET/MRI) can improve diagnostic efficacy. STUDY TYPE: Prospective. POPULATION: 137 patients, including 108 malignant and 29 benign lesions (85 males, 52 females; average age = 60.0 ± 10.0 years). FIELD STRENGTH/SEQUENCE: T2WI, T1WI, multi-b value DWI, MR-based attenuation correction, and PET imaging on a 3.0 T whole-body PET/MR system. ASSESSMENT: The apparent diffusion coefficient (ADC), RSI-derived parameters (restricted diffusion f 1 $$ {f}_1 $$ , hindered diffusion f 2 $$ {f}_2 $$ , and free diffusion f 3 $$ {f}_3 $$ ) and the maximum standardized uptake value (SUVmax) were calculated and analyzed for diagnostic efficacy individually or in combination. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, receiver operating characteristic (ROC) curves, Delong test, Spearman's correlation analysis. P < 0.05 was considered statistically significant. RESULTS: The f 1 $$ {f}_1 $$ , SUVmax were significantly higher, and f 3 $$ {f}_3 $$ , ADC were significantly lower in the malignant group [0.717 ± 0.131, 9.125 (5.753, 13.058), 0.194 ± 0.099, 1.240 (0.972, 1.407)] compared to the benign group [0.504 ± 0.236, 3.390 (1.673, 6.030), 0.398 ± 0.195, 1.485 ± 0.382]. The area under the ROC curve (AUC) values ranked from highest to lowest as follows: AUC (SUVmax) > AUC ( f 3 $$ {f}_3 $$ ) > AUC ( f 1 $$ {f}_1 $$ ) > AUC (ADC) > AUC ( f 2 $$ {f}_2 $$ ) (AUC = 0.819, 0.811, 0.770, 0.745, 0549). The AUC (AUC = 0.900) of the combined model of RSI with PET was significantly higher than that of either single-modality imaging. CONCLUSION: RSI-derived parameters ( f 1 $$ {f}_1 $$ , f 3 $$ {f}_3 $$ ) might help to distinguish primary benign and malignant lung lesions and the discriminatory utility of f 2 $$ {f}_2 $$ was not observed. The RSI exhibits comparable or potentially enhanced performance compared with DWI, and the combined RSI and PET model might improve diagnostic efficacy. TECHNICAL EFFICACY: Stage 2.

14.
Insects ; 15(6)2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38921109

RÉSUMÉ

Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.

15.
Front Aging Neurosci ; 16: 1403077, 2024.
Article de Anglais | MEDLINE | ID: mdl-38903900

RÉSUMÉ

Introduction: Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods: Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results: Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion: These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.

16.
Biomolecules ; 14(5)2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38785928

RÉSUMÉ

The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.


Sujet(s)
Champs magnétiques , Mélanome , Humains , Lignée cellulaire tumorale , Mélanome/anatomopathologie , Mélanome/thérapie , Survie cellulaire/effets des médicaments et des substances chimiques , Nanoparticules de magnétite/composition chimique , Nanoparticules de magnétite/usage thérapeutique
17.
Ultrason Sonochem ; 106: 106883, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38703594

RÉSUMÉ

Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.


Sujet(s)
Antioxydants , Phénomènes chimiques , Ficus , Pectine , Ondes ultrasonores , Pectine/composition chimique , Pectine/isolement et purification , Ficus/composition chimique , Antioxydants/composition chimique , Température , Taille de particule , Concentration en ions d'hydrogène
18.
J Glob Antimicrob Resist ; 38: 35-41, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38763331

RÉSUMÉ

OBJECTIVES: Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS: A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS: Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS: This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.

19.
J Nucl Med ; 65(Suppl 1): 64S-71S, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38719242

RÉSUMÉ

Total-body (TB) PET/CT is a groundbreaking tool that has brought about a revolution in both clinical application and scientific research. The transformative impact of TB PET/CT in the realms of clinical practice and scientific exploration has been steadily unfolding since its introduction in 2018, with implications for its implementation within the health care landscape of China. TB PET/CT's exceptional sensitivity enables the acquisition of high-quality images in significantly reduced time frames. Clinical applications have underscored its effectiveness across various scenarios, emphasizing the capacity to personalize dosage, scan duration, and image quality to optimize patient outcomes. TB PET/CT's ability to perform dynamic scans with high temporal and spatial resolution and to perform parametric imaging facilitates the exploration of radiotracer biodistribution and kinetic parameters throughout the body. The comprehensive TB coverage offers opportunities to study interconnections among organs, enhancing our understanding of human physiology and pathology. These insights have the potential to benefit applications requiring holistic TB assessments. The standard topics outlined in The Journal of Nuclear Medicine were used to categorized the reviewed articles into 3 sections: current clinical applications, scan protocol design, and advanced topics. This article delves into the bottleneck that impedes the full use of TB PET in China, accompanied by suggested solutions.


Sujet(s)
Imagerie du corps entier , Humains , Chine , Tomographie par émission de positons couplée à la tomodensitométrie , Tomographie par émission de positons/méthodes
20.
Small ; : e2400855, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38563589

RÉSUMÉ

The transition metal oxides/sulfides are considered promising catalysts due to their abundant resources, facile synthesis, and reasonable electrocatalytic activity. Herein, a significantly improved intrinsic catalytic activity is achieved for constructing a Co-based nanocrystal (Co-S@NC) with the coordination of Co─S, Co─S─C, and Co─Nx─C. The calculational and experimental results demonstrate that the diversified chemical environment of Co-cations induces the transition of 3d orbitals to a high spin-state that exhibits the coexistence of Co2+ with fully occupied dπ orbitals and Co3+ with unpaired electrons in dπ orbitals. The diverse dπ orbitals occupation contributes to an elevated d-band center of Co ions, which accelerates oxygen reduction reaction and oxygen evolution reaction electrocatalytic kinetics of the Co-S@NC nanocrystal. Therefore, the Li-O2 batteries with Co-S@NC as cathode catalyst exhibit 300 cycles at the current density of 500 mA g-1 with a cut-off capacity of 1000 mAh g-1. Moreover, the ultrahigh discharge specific capacity of 34 587 mAh g-1 is obtained at a current density of 1000 mA g-1, corresponding to the energy density 949 Wh kg-1 of a prototype Li-O2 battery. The study on 3d orbital regulation of nanocrystals provides an innovative strategy for bifunctional electrocatalysts toward the practical application of metal-air batteries.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE