Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
1.
N Engl J Med ; 391(7): 598-608, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39141852

RÉSUMÉ

BACKGROUND: Patients with brain injury who are unresponsive to commands may perform cognitive tasks that are detected on functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). This phenomenon, known as cognitive motor dissociation, has not been systematically studied in a large cohort of persons with disorders of consciousness. METHODS: In this prospective cohort study conducted at six international centers, we collected clinical, behavioral, and task-based fMRI and EEG data from a convenience sample of 353 adults with disorders of consciousness. We assessed the response to commands on task-based fMRI or EEG in participants without an observable response to verbal commands (i.e., those with a behavioral diagnosis of coma, vegetative state, or minimally conscious state-minus) and in participants with an observable response to verbal commands. The presence or absence of an observable response to commands was assessed with the use of the Coma Recovery Scale-Revised (CRS-R). RESULTS: Data from fMRI only or EEG only were available for 65% of the participants, and data from both fMRI and EEG were available for 35%. The median age of the participants was 37.9 years, the median time between brain injury and assessment with the CRS-R was 7.9 months (25% of the participants were assessed with the CRS-R within 28 days after injury), and brain trauma was an etiologic factor in 50%. We detected cognitive motor dissociation in 60 of the 241 participants (25%) without an observable response to commands, of whom 11 had been assessed with the use of fMRI only, 13 with the use of EEG only, and 36 with the use of both techniques. Cognitive motor dissociation was associated with younger age, longer time since injury, and brain trauma as an etiologic factor. In contrast, responses on task-based fMRI or EEG occurred in 43 of 112 participants (38%) with an observable response to verbal commands. CONCLUSIONS: Approximately one in four participants without an observable response to commands performed a cognitive task on fMRI or EEG as compared with one in three participants with an observable response to commands. (Funded by the James S. McDonnell Foundation and others.).


Sujet(s)
Lésions encéphaliques , Troubles de la conscience , Troubles dissociatifs , État végétatif persistant , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Jeune adulte , Encéphale/imagerie diagnostique , Encéphale/physiopathologie , Lésions encéphaliques/physiopathologie , Lésions encéphaliques/complications , Lésions encéphaliques/imagerie diagnostique , Cognition/physiologie , Troubles de la conscience/imagerie diagnostique , Troubles de la conscience/étiologie , Troubles de la conscience/physiopathologie , Électroencéphalographie , Imagerie par résonance magnétique , État végétatif persistant/imagerie diagnostique , État végétatif persistant/étiologie , État végétatif persistant/physiopathologie , Études prospectives , Troubles dissociatifs/imagerie diagnostique , Troubles dissociatifs/étiologie , Troubles dissociatifs/physiopathologie
2.
Crit Care Med ; 52(9): 1414-1426, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39145701

RÉSUMÉ

OBJECTIVES: For critically ill patients with acute severe brain injuries, consciousness may reemerge before behavioral responsiveness. The phenomenon of covert consciousness (i.e., cognitive motor dissociation) may be detected by advanced neurotechnologies such as task-based functional MRI (fMRI) and electroencephalography (EEG) in patients who appear unresponsive on the bedside behavioral examination. In this narrative review, we summarize the state-of-the-science in ICU detection of covert consciousness. Further, we consider the prognostic and therapeutic implications of diagnosing covert consciousness in the ICU, as well as its potential to inform discussions about continuation of life-sustaining therapy for patients with severe brain injuries. DATA SOURCES: We reviewed salient medical literature regarding covert consciousness. STUDY SELECTION: We included clinical studies investigating the diagnostic performance characteristics and prognostic utility of advanced neurotechnologies such as task-based fMRI and EEG. We focus on clinical guidelines, professional society scientific statements, and neuroethical analyses pertaining to the implementation of advanced neurotechnologies in the ICU to detect covert consciousness. DATA EXTRACTION AND DATA SYNTHESIS: We extracted study results, guideline recommendations, and society scientific statement recommendations regarding the diagnostic, prognostic, and therapeutic relevance of covert consciousness to the clinical care of ICU patients with severe brain injuries. CONCLUSIONS: Emerging evidence indicates that covert consciousness is present in approximately 15-20% of ICU patients who appear unresponsive on behavioral examination. Covert consciousness may be detected in patients with traumatic and nontraumatic brain injuries, including patients whose behavioral examination suggests a comatose state. The presence of covert consciousness in the ICU may predict the pace and extent of long-term functional recovery. Professional society guidelines now recommend assessment of covert consciousness using task-based fMRI and EEG. However, the clinical criteria for patient selection for such investigations are uncertain and global access to advanced neurotechnologies is limited.


Sujet(s)
Conscience , Électroencéphalographie , Unités de soins intensifs , Imagerie par résonance magnétique , Humains , Électroencéphalographie/méthodes , Conscience/physiologie , Lésions encéphaliques/diagnostic , Lésions encéphaliques/thérapie , Pronostic , Troubles de la conscience/diagnostic , Maladie grave
3.
JAMA Netw Open ; 7(8): e2426141, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39106064

RÉSUMÉ

Importance: The chronic neuronal burden of traumatic brain injury (TBI) is not fully characterized by routine imaging, limiting understanding of the role of neuronal substrates in adverse outcomes. Objective: To determine whether tissues that appear healthy on routine imaging can be investigated for selective neuronal loss using [11C]flumazenil (FMZ) positron emission tomography (PET) and to examine whether this neuronal loss is associated with long-term outcomes. Design, Setting, and Participants: In this cross-sectional study, data were collected prospectively from 2 centers (University of Cambridge in the UK and Weill Cornell Medicine in the US) between September 1, 2004, and May 31, 2021. Patients with TBI (>6 months postinjury) were compared with healthy control participants (all aged >18 years). Individuals with neurological disease, benzodiazepine use, or contraindication to magnetic resonance imaging were excluded. Data were retrospectively collated with nonconsecutive recruitment, owing to convenience and scanner or PET ligand availability. Data were analyzed between February 1 and September 30, 2023. Exposure: Flumazenil voxelwise binding potential relative to nondisplaceable binding potential (BPND). Main Outcomes and Measures: Selective neuronal loss identified with FMZ PET was compared between groups on voxelwise and regional scales, and its association with functional, cognitive, and psychological outcomes was examined using Glasgow Outcome Scale (GOS) scores, measures of sustained executive attention (animal and sustained fluency), and 36-Item Short Form Health Survey (SF-36) scores. Diffusion tensor imaging was used to assess structural connectivity of regions of cortical damage, and its association with thalamic selective neuronal loss. Results: In this study, 24 patients with chronic TBI (mean [SD] age, 39.2 [12.3] years; 18 men [75.0%]) and 33 healthy control participants (mean [SD] age, 47.6 [20.5] years; 23 men [69.7%]) underwent FMZ PET. Patients with TBI had a median time of 29 (range, 7-95) months from injury to scan. They displayed selective neuronal loss in thalamic nuclei, over and above gross volume loss in the left thalamus, and bilateral central, mediodorsal, ventral-lateral dorsal, anterior, and ventral anterior thalamic nuclei, across a wide range of injury severities. Neuronal loss was associated with worse functional outcome using GOS scores (left thalamus, left ventral anterior, and bilateral central, mediodorsal, and anterior nuclei), worse cognitive outcome on measures of sustained executive attention (left thalamus, bilateral central, and right mediodorsal nuclei), and worse emotional outcome using SF-36 scores (right central thalamic nucleus). Chronic thalamic neuronal loss partially mirrored the location of primary cortical contusions, which may indicate secondary injury mechanisms of transneuronal degeneration. Conclusions and Relevance: The findings of this study suggest that selective thalamic vulnerability may have chronic neuronal consequences with relevance to long-term outcome, suggesting the evolving and potentially lifelong thalamic neuronal consequences of TBI. FMZ PET is a more sensitive marker of the burden of neuronal injury than routine imaging; therefore, it could inform outcome prognostication and may lead to the development of individualized precision medicine approaches.


Sujet(s)
Lésions traumatiques de l'encéphale , Tomographie par émission de positons , Thalamus , Humains , Mâle , Femelle , Adulte , Lésions traumatiques de l'encéphale/imagerie diagnostique , Lésions traumatiques de l'encéphale/anatomopathologie , Lésions traumatiques de l'encéphale/complications , Études transversales , Adulte d'âge moyen , Tomographie par émission de positons/méthodes , Thalamus/imagerie diagnostique , Thalamus/anatomopathologie , Flumazénil/analogues et dérivés , Neurones/anatomopathologie
4.
Front Immunol ; 15: 1425488, 2024.
Article de Anglais | MEDLINE | ID: mdl-39086484

RÉSUMÉ

As the dimensionality, throughput and complexity of cytometry data increases, so does the demand for user-friendly, interactive analysis tools that leverage high-performance machine learning frameworks. Here we introduce FlowAtlas: an interactive web application that enables dimensionality reduction of cytometry data without down-sampling and that is compatible with datasets stained with non-identical panels. FlowAtlas bridges the user-friendly environment of FlowJo and computational tools in Julia developed by the scientific machine learning community, eliminating the need for coding and bioinformatics expertise. New population discovery and detection of rare populations in FlowAtlas is intuitive and rapid. We demonstrate the capabilities of FlowAtlas using a human multi-tissue, multi-donor immune cell dataset, highlighting key immunological findings. FlowAtlas is available at https://github.com/gszep/FlowAtlas.jl.git.


Sujet(s)
Biologie informatique , Cytométrie en flux , Immunophénotypage , Logiciel , Humains , Immunophénotypage/méthodes , Cytométrie en flux/méthodes , Biologie informatique/méthodes , Apprentissage machine
5.
Elife ; 122024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39022924

RÉSUMÉ

How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.


The human brain consists of billions of neurons which process sensory inputs, such as sight and sound, and combines them with information already stored in the brain. This integration of information guides our decisions, thoughts, and movements, and is hypothesized to be integral to consciousness. However, it is poorly understood how the brain regions responsible for processing this integration are organized in the brain. To investigate this question, Luppi et al. employed a mathematical framework called Partial Information Decomposition (PID) which can distinguish different types of information: redundancy (available from many regions) and synergy (which reflects genuine integration). The team applied the PID framework to the brain scans of 100 individuals. This allowed them to identify which brain regions combine information from across the brain (known as gateways), and which ones transmit it back to the rest of the brain (known as broadcasters). Next, Luppi et al. set out to find how these regions compared in unconscious and conscious individuals. To do this, they studied 15 healthy volunteers whose brains were scanned (using a technique called functional MRI) before, during, and after anaesthesia. This revealed that the brain integrated less information when unconscious, and that this reduction happens predominantly in gateway rather than broadcaster regions. The same effect was also observed in the brains of individuals who were permanently unconscious due to brain injuries. These findings provide a way of understanding how information is organised in the brain. They also suggest that loss of consciousness due to brain injuries and anaesthesia involve similar brain circuits. This means it may be possible to gain insights about disorders of consciousness from studying how people emerge from anaesthesia.


Sujet(s)
Encéphale , Conscience , Imagerie par résonance magnétique , Humains , Conscience/physiologie , Encéphale/physiologie , Encéphale/imagerie diagnostique , Mâle , Adulte , Femelle , Jeune adulte , Réseau du mode par défaut/physiologie
6.
Brain Commun ; 6(4): fcae223, 2024.
Article de Anglais | MEDLINE | ID: mdl-38989528

RÉSUMÉ

Repeated mild traumatic brain injury is of growing interest regarding public and sporting safety and is thought to have greater adverse or cumulative neurological effects when compared with single injury. While epidemiological links between repeated traumatic brain injury and outcome have been investigated in humans, exploration of its mechanistic substrates has been largely undertaken in animal models. We compared acute neurological effects of repeat mild traumatic brain injury (n = 21) to that of single injury (n = 21) and healthy controls (n = 76) using resting-state functional MRI and quantified thalamic functional connectivity, given previous identification of its prognostic potential in human mild traumatic brain injury and rodent repeat mild traumatic brain injury. Acute thalamocortical functional connectivity showed a rank-based trend of increasing connectivity with number of injuries, at local and global scales of investigation. Thus, history of as few as two previous injuries can induce a vulnerable neural environment of exacerbated hyperconnectivity, in otherwise healthy individuals from non-specialist populations. These results further establish thalamocortical functional connectivity as a scalable marker of acute injury and long-term neural dysfunction following mild traumatic brain injury.

7.
Nat Commun ; 15(1): 4745, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38834553

RÉSUMÉ

Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.


Sujet(s)
Encéphale , Connectome , Imagerie par résonance magnétique , Humains , Imagerie par résonance magnétique/méthodes , Connectome/méthodes , Encéphale/imagerie diagnostique , Encéphale/physiologie , Traitement d'image par ordinateur/méthodes , Mâle , Adulte , Femelle , Réseau nerveux/physiologie , Réseau nerveux/imagerie diagnostique , Cartographie cérébrale/méthodes , Jeune adulte
8.
Trends Neurosci ; 47(7): 551-568, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38824075

RÉSUMÉ

Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.


Sujet(s)
Encéphale , Conscience , Humains , Conscience/physiologie , Encéphale/physiologie , Animaux , Cognition/physiologie
9.
Ann Neurol ; 96(2): 365-377, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38845484

RÉSUMÉ

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.


Sujet(s)
Lésions traumatiques de l'encéphale , Imagerie par résonance magnétique , Humains , Lésions traumatiques de l'encéphale/imagerie diagnostique , Lésions traumatiques de l'encéphale/anatomopathologie , Lésions traumatiques de l'encéphale/complications , Mâle , Femelle , Adulte , Adulte d'âge moyen , Études de cohortes , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Sujet âgé , Vieillissement/anatomopathologie , Vieillissement précoce/imagerie diagnostique , Vieillissement précoce/anatomopathologie
10.
BMJ Open ; 14(6): e085084, 2024 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-38885989

RÉSUMÉ

OBJECTIVE: To estimate the cost-effectiveness of craniotomy, compared with decompressive craniectomy (DC) in UK patients undergoing evacuation of acute subdural haematoma (ASDH). DESIGN: Economic evaluation undertaken using health resource use and outcome data from the 12-month multicentre, pragmatic, parallel-group, randomised, Randomised Evaluation of Surgery with Craniectomy for Patients Undergoing Evacuation-ASDH trial. SETTING: UK secondary care. PARTICIPANTS: 248 UK patients undergoing surgery for traumatic ASDH were randomised to craniotomy (N=126) or DC (N=122). INTERVENTIONS: Surgical evacuation via craniotomy (bone flap replaced) or DC (bone flap left out with a view to replace later: cranioplasty surgery). MAIN OUTCOME MEASURES: In the base-case analysis, costs were estimated from a National Health Service and Personal Social Services perspective. Outcomes were assessed via the quality-adjusted life-years (QALY) derived from the EuroQoL 5-Dimension 5-Level questionnaire (cost-utility analysis) and the Extended Glasgow Outcome Scale (GOSE) (cost-effectiveness analysis). Multiple imputation and regression analyses were conducted to estimate the mean incremental cost and effect of craniotomy compared with DC. The most cost-effective option was selected, irrespective of the level of statistical significance as is argued by economists. RESULTS: In the cost-utility analysis, the mean incremental cost of craniotomy compared with DC was estimated to be -£5520 (95% CI -£18 060 to £7020) with a mean QALY gain of 0.093 (95% CI 0.029 to 0.156). In the cost-effectiveness analysis, the mean incremental cost was estimated to be -£4536 (95% CI -£17 374 to £8301) with an OR of 1.682 (95% CI 0.995 to 2.842) for a favourable outcome on the GOSE. CONCLUSIONS: In a UK population with traumatic ASDH, craniotomy was estimated to be cost-effective compared with DC: craniotomy was estimated to have a lower mean cost, higher mean QALY gain and higher probability of a more favourable outcome on the GOSE (though not all estimated differences between the two approaches were statistically significant). ETHICS: Ethical approval for the trial was obtained from the North West-Haydock Research Ethics Committee in the UK on 17 July 2014 (14/NW/1076). TRIAL REGISTRATION NUMBER: ISRCTN87370545.


Sujet(s)
Analyse coût-bénéfice , Craniotomie , Craniectomie décompressive , Hématome subdural aigu , Années de vie ajustées sur la qualité , Adulte , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen , Craniotomie/économie , Craniotomie/méthodes , Craniectomie décompressive/économie , Échelle de suivi de Glasgow , Hématome subdural aigu/chirurgie , Hématome subdural aigu/économie , Résultat thérapeutique , Royaume-Uni
11.
Neurosurgery ; 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38771081

RÉSUMÉ

BACKGROUND AND OBJECTIVES: Guideline recommendations for surgical management of traumatic epidural hematomas (EDHs) do not directly address EDHs that co-occur with other intracranial hematomas; the relative rates of isolated vs nonisolated EDHs and guideline adherence are unknown. We describe characteristics of a contemporary cohort of patients with EDHs and identify factors influencing acute surgery. METHODS: This research was conducted within the longitudinal, observational Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury cohort study which prospectively enrolled patients with traumatic brain injury from 65 hospitals in 18 European countries from 2014 to 2017. All patients with EDH on the first scan were included. We describe clinical, imaging, management, and outcome characteristics and assess associations between site and baseline characteristics and acute EDH surgery, using regression modeling. RESULTS: In 461 patients with EDH, median age was 41 years (IQR 24-56), 76% were male, and median EDH volume was 5 cm3 (IQR 2-20). Concomitant acute subdural hematomas (ASDHs) and/or intraparenchymal hemorrhages were present in 328/461 patients (71%). Acute surgery was performed in 99/461 patients (21%), including 70/86 with EDH volume ≥30 cm3 (81%). Larger EDH volumes (odds ratio [OR] 1.19 [95% CI 1.14-1.24] per cm3 below 30 cm3), smaller ASDH volumes (OR 0.93 [95% CI 0.88-0.97] per cm3), and midline shift (OR 6.63 [95% CI 1.99-22.15]) were associated with acute surgery; between-site variation was observed (median OR 2.08 [95% CI 1.01-3.48]). Six-month Glasgow Outcome Scale-Extended scores ≥5 occurred in 289/389 patients (74%); 41/389 (11%) died. CONCLUSION: Isolated EDHs are relatively infrequent, and two-thirds of patients harbor concomitant ASDHs and/or intraparenchymal hemorrhages. EDHs ≥30 cm3 are generally evacuated early, adhering to Brain Trauma Foundation guidelines. For heterogeneous intracranial pathology, surgical decision-making is related to clinical status and overall lesion burden. Further research should examine the optimal surgical management of EDH with concomitant lesions in traumatic brain injury, to inform updated guidelines.

12.
Crit Care ; 28(1): 170, 2024 05 20.
Article de Anglais | MEDLINE | ID: mdl-38769582

RÉSUMÉ

AIMS AND SCOPE: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. METHODS: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. RESULTS: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0-37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. CONCLUSIONS: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.


Sujet(s)
Lésions traumatiques de l'encéphale , Consensus , Méthode Delphi , Hypothermie provoquée , Humains , Lésions traumatiques de l'encéphale/thérapie , Lésions traumatiques de l'encéphale/physiopathologie , Lésions traumatiques de l'encéphale/complications , Hypothermie provoquée/méthodes , Hypothermie provoquée/normes , Unités de soins intensifs/organisation et administration , Pression intracrânienne/physiologie , Enquêtes et questionnaires
14.
Age Ageing ; 53(4)2024 04 01.
Article de Anglais | MEDLINE | ID: mdl-38610063

RÉSUMÉ

BACKGROUND: Chronic subdural haematoma (cSDH) is a common neurosurgical pathology affecting older patients with other health conditions. A significant proportion (up-to 90%) of referrals for surgery in neurosciences units (NSU) come from secondary care. However, the organisation of this care and the experience of patients repatriated to non-specialist centres are currently unclear. OBJECTIVES: This study aimed to clarify patient outcome in non-specialist centres following NSU discharge for cSDH surgery and to understand key system challenges. The study was set within a representative neurosurgical care system in the east of England. DESIGN AND METHODS: We performed a retrospective cohort analysis of patients referred for cSDH surgery. Alongside case record review, patient and staff experience were explored using surveys as well as an interactive c-design workshop. Challenges were identified from thematic analysis of survey responses and triangulated by focussed workshop discussions. RESULTS: Data on 381 patients referred for cSDH surgery from six centres was reviewed. One hundred and fifty-six (41%) patients were repatriated following surgery. Sixty-one (39%) of those repatriated suffered an inpatient complication (new infection, troponin rise or renal injury) following NSU discharge, with 58 requiring institutional discharge or new care. Surveys for staff (n = 42) and patients (n = 209) identified that resourcing, communication, and inter-hospital distance posed care challenges. This was corroborated through workshop discussions with stakeholders from two institutions. CONCLUSIONS: A significant amount of perioperative care for cSDH is delivered outside of specialist centres. Future improvement initiatives must recognise the system-wide nature of delivery and the challenges such an arrangement presents.


Sujet(s)
Hématome subdural chronique , Humains , Hématome subdural chronique/diagnostic , Hématome subdural chronique/chirurgie , Études rétrospectives , Patients hospitalisés , Communication , Angleterre/épidémiologie
15.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Article de Anglais | MEDLINE | ID: mdl-38687499

RÉSUMÉ

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Sujet(s)
Soins de réanimation , Unités de soins intensifs , Médecine de précision , Humains , Médecine de précision/méthodes , Soins de réanimation/méthodes , Soins de réanimation/normes , Consensus , Syndrome , Maladie grave/thérapie , Phénotype , /thérapie , /diagnostic , /classification
16.
Trends Cogn Sci ; 28(5): 454-466, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38485576

RÉSUMÉ

Which systems/organisms are conscious? New tests for consciousness ('C-tests') are urgently needed. There is persisting uncertainty about when consciousness arises in human development, when it is lost due to neurological disorders and brain injury, and how it is distributed in nonhuman species. This need is amplified by recent and rapid developments in artificial intelligence (AI), neural organoids, and xenobot technology. Although a number of C-tests have been proposed in recent years, most are of limited use, and currently we have no C-tests for many of the populations for which they are most critical. Here, we identify challenges facing any attempt to develop C-tests, propose a multidimensional classification of such tests, and identify strategies that might be used to validate them.


Sujet(s)
Conscience , Humains , Conscience/physiologie , Animaux , Intelligence artificielle , Encéphale/physiologie
17.
J Neurotrauma ; 41(13-14): 1550-1564, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38468502

RÉSUMÉ

Cerebral microdialysis (CMD) catheters allow continuous monitoring of patients' cerebral metabolism in severe traumatic brain injury (TBI). The catheters consist of a terminal semi-permeable membrane that is inserted into the brain's interstitium to allow perfusion fluid to equalize with the surrounding cerebral extracellular environment before being recovered through a central non-porous channel. However, it is unclear how far recovered fluid and suspended metabolites have diffused from within the brain, and therefore what volume or region of brain tissue the analyses of metabolism represent. We assessed diffusion of the small magnetic resonance (MR)-detectible molecule gadobutrol from microdialysis catheters in six subjects (complete data five subjects, incomplete data one subject) who had sustained a severe TBI. Diffusion pattern and distance in cerebral white matter were assessed using T1 (time for MR spin-lattice relaxation) maps at 1 mm isotropic resolution in a 3 Tesla MR scanner. Gadobutrol at 10 mmol/L diffused from cerebral microdialysis catheters in a uniform spheroidal (ellipsoid of revolution) pattern around the catheters' semipermeable membranes, and across gray matter-white matter boundaries. Evidence of gadobutrol diffusion was found up to a mean of 13.4 ± 0.5 mm (mean ± standard deviation [SD]) from catheters, but with a steep concentration drop off so that ≤50% of maximum concentration was achieved at ∼4 mm, and ≤10% of maximum was found beyond ∼7 mm from the catheters. There was little variation between subjects. The relaxivity of gadobutrol in human cerebral white matter was estimated to be 1.61 ± 0.38 L.mmol-1sec-1 (mean ± SD); assuming gadobutrol remained extracellular thereby occupying 20% of total tissue volume (interstitium), and concentration equilibrium with perfusion fluid was achieved immediately adjacent to catheters after 24 h of perfusion. No statistically significant change was found in the concentration of the extracellular metabolites glucose, lactate, pyruvate, nor the lactate/pyruvate ratio during gadobutrol perfusion when compared with period of baseline microdialysis perfusion. Cerebral microdialysis allows continuous monitoring of regional cerebral metabolism-the volume of which is now clearer from this study. It also has the potential to deliver small molecule therapies to focal pathologies of the human brain. This study provides a platform for future development of new catheters optimally designed to treat such conditions.


Sujet(s)
Lésions traumatiques de l'encéphale , Imagerie par résonance magnétique , Microdialyse , Composés organométalliques , Humains , Microdialyse/méthodes , Microdialyse/instrumentation , Mâle , Adulte , Femelle , Imagerie par résonance magnétique/méthodes , Lésions traumatiques de l'encéphale/métabolisme , Lésions traumatiques de l'encéphale/imagerie diagnostique , Adulte d'âge moyen , Encéphale/métabolisme , Encéphale/imagerie diagnostique , Jeune adulte , Diffusion , Produits de contraste , Cathéters
18.
Alzheimers Dement ; 20(4): 2861-2872, 2024 04.
Article de Anglais | MEDLINE | ID: mdl-38451782

RÉSUMÉ

BACKGROUND: Structural disconnectivity was found to precede dementia. Global white matter abnormalities might also be associated with postoperative delirium (POD). METHODS: We recruited older patients (≥65 years) without dementia that were scheduled for major surgery. Diffusion kurtosis imaging metrics were obtained preoperatively, after 3 and 12 months postoperatively. We calculated fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and free water (FW). A structured and validated delirium assessment was performed twice daily. RESULTS: Of 325 patients, 53 patients developed POD (16.3%). Preoperative global MD (standardized beta 0.27 [95% confidence interval [CI] 0.21-0.32] p < 0.001) was higher in patients with POD. Preoperative global MK (-0.07 [95% CI -0.11 to (-0.04)] p < 0.001) and FA (0.07 [95% CI -0.10 to (-0.04)] p < 0.001) were lower. When correcting for baseline diffusion, postoperative MD was lower after 3 months (0.05 [95% CI -0.08 to (-0.03)] p < 0.001; n = 183) and higher after 12 months (0.28 [95% CI 0.20-0.35] p < 0.001; n = 45) among patients with POD. DISCUSSION: Preoperative structural disconnectivity was associated with POD. POD might lead to white matter depletion 3 and 12 months after surgery.


Sujet(s)
Démence , Délire d'émergence , Substance blanche , Humains , Sujet âgé , Études de cohortes , Substance blanche/imagerie diagnostique , Imagerie par tenseur de diffusion/méthodes
19.
J Neurosurg ; 141(2): 417-429, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38489823

RÉSUMÉ

OBJECTIVE: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS: Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS: The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.


Sujet(s)
Lésions traumatiques de l'encéphale , Échelle de coma de Glasgow , Échelle de suivi de Glasgow , Humains , Lésions traumatiques de l'encéphale/mortalité , Lésions traumatiques de l'encéphale/thérapie , Adulte d'âge moyen , Femelle , Pronostic , Mâle , Adulte , Études prospectives , Sujet âgé , Études de cohortes , Jeune adulte , Adolescent
20.
Intensive Care Med ; 50(3): 371-384, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38376517

RÉSUMÉ

PURPOSE: We analysed the impact of early systemic insults (hypoxemia and hypotension, SIs) on brain injury biomarker profiles, acute care requirements during intensive care unit (ICU) stay, and 6-month outcomes in patients with traumatic brain injury (TBI). METHODS: From patients recruited to the Collaborative European neurotrauma effectiveness research in TBI (CENTER-TBI) study, we documented the prevalence and risk factors for SIs and analysed their effect on the levels of brain injury biomarkers [S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and protein Tau], critical care needs, and 6-month outcomes [Glasgow Outcome Scale Extended (GOSE)]. RESULTS: Among 1695 TBI patients, 24.5% had SIs: 16.1% had hypoxemia, 15.2% had hypotension, and 6.8% had both. Biomarkers differed by SI category, with higher S100B, Tau, UCH-L1, NSE and NfL values in patients with hypotension or both SIs. The ratio of neural to glial injury (quantified as UCH-L1/GFAP and Tau/GFAP ratios) was higher in patients with hypotension than in those with no SIs or hypoxia alone. At 6 months, 380 patients died (22%), and 759 (45%) had GOSE ≤ 4. Patients who experienced at least one SI had higher mortality than those who did not (31.8% vs. 19%, p < 0.001). CONCLUSION: Though less frequent than previously described, SIs in TBI patients are associated with higher release of neuronal than glial injury biomarkers and with increased requirements for ICU therapies aimed at reducing intracranial hypertension. Hypotension or combined SIs are significantly associated with adverse 6-month outcomes. Current criteria for hypotension may lead to higher biomarker levels and more negative outcomes than those for hypoxemia suggesting a need to revisit pressure targets in the prehospital settings.


Sujet(s)
Lésions traumatiques de l'encéphale , Lésions encéphaliques , Hypotension artérielle , Humains , Études prospectives , Lésions traumatiques de l'encéphale/complications , Lésions traumatiques de l'encéphale/thérapie , Marqueurs biologiques , Ubiquitin thiolesterase , Hypoxie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE