Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 164
Filtrer
1.
Hepatol Commun ; 8(8)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39082970

RÉSUMÉ

BACKGROUND: Alcohol-associated hepatitis (AH) is plagued with high mortality and difficulty in identifying at-risk patients. The extracellular matrix undergoes significant remodeling during inflammatory liver injury and could potentially be used for mortality prediction. METHODS: EDTA plasma samples were collected from patients with AH (n = 62); Model for End-Stage Liver Disease score defined AH severity as moderate (12-20; n = 28) and severe (>20; n = 34). The peptidome data were collected by high resolution, high mass accuracy UPLC-MS. Univariate and multivariate analyses identified differentially abundant peptides, which were used for Gene Ontology, parent protein matrisomal composition, and protease involvement. Machine-learning methods were used to develop mortality predictors. RESULTS: Analysis of plasma peptides from patients with AH and healthy controls identified over 1600 significant peptide features corresponding to 130 proteins. These were enriched for extracellular matrix fragments in AH samples, likely related to the turnover of hepatic-derived proteins. Analysis of moderate versus severe AH peptidomes was dominated by changes in peptides from collagen 1A1 and fibrinogen A proteins. The dominant proteases for the AH peptidome spectrum appear to be CAPN1 and MMP12. Causal graphical modeling identified 3 peptides directly linked to 90-day mortality in >90% of the learned graphs. These peptides improved the accuracy of mortality prediction over the Model for End-Stage Liver Disease score and were used to create a clinically applicable mortality prediction assay. CONCLUSIONS: A signature based on plasma peptidome is a novel, noninvasive method for prognosis stratification in patients with AH. Our results could also lead to new mechanistic and/or surrogate biomarkers to identify new AH mechanisms.


Sujet(s)
Matrice extracellulaire , Hépatite alcoolique , Humains , Mâle , Pronostic , Femelle , Hépatite alcoolique/sang , Hépatite alcoolique/mortalité , Matrice extracellulaire/métabolisme , Adulte d'âge moyen , Adulte , Peptides/sang , Marqueurs biologiques/sang , Indice de gravité de la maladie , Apprentissage machine , Études cas-témoins , Protéomique
2.
Nutrients ; 16(13)2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38999831

RÉSUMÉ

The interactions of different dietary doses of copper with fructose contribute to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) via the gut-liver axis. The underlying mechanisms remain elusive. The aim of this study was to identify the specific pathways leading to gut barrier dysfunction in the ileum using a proteomics approach in a rat model. Male weanling Sprague Dawley rats were fed diets with adequate copper (CuA), marginal copper (CuM), or supplemented copper (CuS) in the absence or presence of fructose supplementation (CuAF, CuMF, and CuSF) for 4 weeks. Ileum protein was extracted and analyzed with an LC-MS. A total of 2847 differentially expressed proteins (DEPs) were identified and submitted to functional enrichment analysis. As a result, the ileum proteome and signaling pathways that were differentially altered were revealed. Of note, the CuAF is characterized by the enrichment of oxidative phosphorylation and ribosome as analyzed with the KEGG; the CuMF is characterized by an enriched arachidonic acid metabolism pathway; and focal adhesion, the regulation of the actin cytoskeleton, and tight junction were significantly enriched by the CuSF. In conclusion, our proteomics analysis identified the specific pathways in the ileum related to the different dietary doses of copper-fructose interactions, suggesting that distinct mechanisms in the gut are involved in the development of MASLD.


Sujet(s)
Cuivre , Fructose , Iléum , Foie , Protéomique , Rat Sprague-Dawley , Animaux , Fructose/administration et posologie , Fructose/effets indésirables , Mâle , Cuivre/métabolisme , Protéomique/méthodes , Iléum/métabolisme , Iléum/effets des médicaments et des substances chimiques , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Rats , Régime alimentaire , Protéome/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/étiologie , Compléments alimentaires
3.
Sci Rep ; 14(1): 14803, 2024 06 26.
Article de Anglais | MEDLINE | ID: mdl-38926450

RÉSUMÉ

Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.


Sujet(s)
Altération de l'ADN , Électrons , Plasmides , Plasmides/génétique , Relation dose-effet des rayonnements , Humains , Accélérateurs de particules , Cassures simple-brin de l'ADN/effets des radiations
4.
Entropy (Basel) ; 26(6)2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38920510

RÉSUMÉ

The process of end-joining during nonhomologous repair of DNA double-strand breaks (DSBs) after radiation damage is considered. Experimental evidence has revealed that the dynamics of DSB ends exhibit subdiffusive motion rather than simple diffusion with rare directional movement. Traditional models often overlook the rare long-range directed motion. To address this limitation, we present a heterogeneous anomalous diffusion model consisting of subdiffusive fractional Brownian motion interchanged with short periods of long-range movement. Our model sheds light on the underlying mechanisms of heterogeneous diffusion in DSB repair and could be used to quantify the DSB dynamics on a time scale inaccessible to single particle tracking analysis. The model predicts that the long-range movement of DSB ends is responsible for the misrepair of DSBs in the form of dicentric chromosome lesions.

5.
Sci Rep ; 14(1): 10957, 2024 05 13.
Article de Anglais | MEDLINE | ID: mdl-38740830

RÉSUMÉ

Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.


Sujet(s)
Survie cellulaire , Tumeurs du poumon , Tumeurs de la prostate , Efficacité biologique relative , Humains , Tumeurs de la prostate/radiothérapie , Tumeurs de la prostate/anatomopathologie , Mâle , Tumeurs du poumon/radiothérapie , Tumeurs du poumon/anatomopathologie , Survie cellulaire/effets des radiations , Électrons/usage thérapeutique , Accélérateurs de particules , Cellules PC-3 , Lignée cellulaire tumorale , Cellules A549
6.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38619879

RÉSUMÉ

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Sujet(s)
Polluants environnementaux , Stéatose hépatique , Maladies alcooliques du foie , Polychlorobiphényles , Mâle , Souris , Animaux , Multi-omique , Souris de lignée C57BL , Éthanol/toxicité , Éthanol/métabolisme , Foie/métabolisme , Polychlorobiphényles/toxicité , Polychlorobiphényles/métabolisme , Maladies alcooliques du foie/étiologie , Maladies alcooliques du foie/métabolisme , Maladies alcooliques du foie/anatomopathologie , Polluants environnementaux/toxicité , Polluants environnementaux/métabolisme , Zinc/métabolisme , Tyrosine/métabolisme
7.
Environ Toxicol Pharmacol ; 107: 104430, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38552755

RÉSUMÉ

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.


Sujet(s)
Arochlores , Stéatose hépatique , Sélénium , Mâle , Souris , Animaux , Protéome/métabolisme , Glutathione peroxidase/métabolisme , Sélénoprotéines/génétique , Sélénoprotéines/métabolisme , Foie/métabolisme
8.
Small ; 20(20): e2308680, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38225709

RÉSUMÉ

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Sujet(s)
Axe cerveau-intestin , Diabète de type 2 , Exosomes , Ail , Microbiome gastro-intestinal , Nanoparticules , Diabète de type 2/métabolisme , Ail/composition chimique , Animaux , Nanoparticules/composition chimique , Exosomes/métabolisme , Souris , Akkermansia (genre) , Humains , Mâle , Alimentation riche en graisse , Souris de lignée C57BL , Encéphale/métabolisme , Encéphale/anatomopathologie
9.
J Proteome Res ; 23(2): 673-683, 2024 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-38157263

RÉSUMÉ

Protein S-acylation is a reversible post-translational modification (PTM). It is present on diverse proteins and has important roles in regulating protein function. Aminolysis with hydroxylamine is widely used in the global identification of the PTM. However, the identification is indirect. Distinct criteria have been used for identification, and the false discovery rate has not been addressed. Here, we report a site-specific method for S-acylation identification based on tagging of S-acylation sites with iodoTMT0. Efforts to improve the performance of the method and confidence of identification are discussed, highlighting the importance of reducing contaminant peptides and keeping the recovery rate consistent between aliquots with or without hydroxylamine treatment. With very stringent criteria, presumptive S-acylation sites of 269, 684, 695, and 780 were identified from HK2 cells, HK11 cells, mouse brain, and mouse liver samples, respectively. Among them, the newly identified protein S-acylation sites are equivalent to 34% of human and 24% of mouse S-acylation sites reported previously. In addition, false-positive rates for S-acylation identification and S-acylation abundances were estimated. Significant differences in S-acylation abundance were found from different samples (from 0.08% in HK2 cells to 0.76% in mouse brain), and the false-positive rates were significantly higher for samples with a low abundance of S-acylation.


Sujet(s)
Maturation post-traductionnelle des protéines , Protéines , Animaux , Souris , Humains , Acylation , Lipoylation , Hydroxylamine , Hydroxylamines
10.
Radiat Res ; 200(6): 509-522, 2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-38014593

RÉSUMÉ

The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.


Sujet(s)
Réparation de l'ADN , Tumeurs , Humains , Altération de l'ADN , Cassures double-brin de l'ADN , Simulation numérique
11.
J Pathol ; 261(3): 361-371, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37735782

RÉSUMÉ

Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFß1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFß1 levels were highly correlated with PDE4 expression. TGFß1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFß1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.


Sujet(s)
Actines , Cyclic Nucleotide Phosphodiesterases, Type 4 , Animaux , Humains , Souris , Actines/métabolisme , Mouvement cellulaire , Cyclic Nucleotide Phosphodiesterases, Type 4/génétique , Cyclic Nucleotide Phosphodiesterases, Type 4/métabolisme , Cytosquelette/métabolisme , Cytosquelette/anatomopathologie , Fibrose , Cellules étoilées du foie/métabolisme , Cirrhose du foie/anatomopathologie , Protéomique , Rolipram/métabolisme
12.
Kidney Int Rep ; 8(6): 1239-1254, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37284673

RÉSUMÉ

Introduction: Nephrotic syndrome (NS) occurs commonly in children with glomerular disease and glucocorticoids (GCs) are the mainstay treatment. Steroid resistant NS (SRNS) develops in 15% to 20% of children, increasing the risk of chronic kidney disease compared to steroid sensitive NS (SSNS). NS pathogenesis is unclear in most children, and no biomarkers exist that predict the development of pediatric SRNS. Methods: We studied a unique patient cohort with plasma specimens collected before GC treatment, yielding a disease-only sample not confounded by steroid-induced gene expression changes (SSNS n = 8; SRNS n = 7). A novel "patient-specific" bioinformatic approach merged paired pretreatment and posttreatment proteomic and metabolomic data and identified candidate SRNS biomarkers and altered molecular pathways in SRNS versus SSNS. Results: Joint pathway analyses revealed perturbations in nicotinate or nicotinamide and butanoate metabolic pathways in patients with SRNS. Patients with SSNS had perturbations of lysine degradation, mucin type O-glycan biosynthesis, and glycolysis or gluconeogenesis pathways. Molecular analyses revealed frequent alteration of molecules within these pathways that had not been observed by separate proteomic and metabolomic studies. We observed upregulation of NAMPT, NMNAT1, and SETMAR in patients with SRNS, in contrast to upregulation of ALDH1B1, ACAT1, AASS, ENPP1, and pyruvate in patients with SSNS. Pyruvate regulation was the change seen in our previous analysis; all other targets were novel. Immunoblotting confirmed increased NAMPT expression in SRNS and increased ALDH1B1 and ACAT1 expression in SSNS, following GC treatment. Conclusion: These studies confirmed that a novel "patient-specific" bioinformatic approach can integrate disparate omics datasets and identify candidate SRNS biomarkers not observed by separate proteomic or metabolomic analysis.

13.
Sci Rep ; 13(1): 9965, 2023 06 20.
Article de Anglais | MEDLINE | ID: mdl-37340062

RÉSUMÉ

Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease and decreased survival. Lack of risk stratification strategies hampers early intervention against development of post-LT NASH fibrosis. The liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether liver injury caused by post-LT NASH would yield a unique degradome profile that is predictive of severe post-LT NASH fibrosis, a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without) was performed. Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ~ 2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (~ 15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. The plasma degradome profile of post-LT patients yielded stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.


Sujet(s)
Transplantation hépatique , Stéatose hépatique non alcoolique , Animaux , Souris , Transplantation hépatique/méthodes , Stéatose hépatique non alcoolique/complications , Études rétrospectives , Chromatographie en phase liquide , Spectrométrie de masse en tandem , Cirrhose du foie/complications
14.
J Radiat Res ; 2023 May 06.
Article de Anglais | MEDLINE | ID: mdl-37154587

RÉSUMÉ

The pBR322 plasmid DNA was irradiated with 35 MeV electrons, 228 MeV protons and 300 kVp X-rays to quantify DNA damage and make comparisons of DNA damage between radiation modalities. Plasmid was irradiated in a medium containing hydroxyl radical scavengers in varying concentrations. This altered the amount of indirect hydroxyl-mediated DNA damage, to create an environment that is more closely associated with a biological cell. We show that increasing hydroxyl scavenger concentration significantly reduced post-irradiation DNA damage to pBR322 plasmid DNA consistently and equally with three radiation modalities. At low scavenging capacities, irradiation with both 35 MeV electrons and 228 MeV protons resulted in increased DNA damage per dose compared with 300 kVp X-rays. We quantify both single-strand break (SSB) and double-strand break (DSB) induction between the modalities as a ratio of yields relative to X-rays, referred to as relative biological effectiveness (RBE). RBESSB values of 1.16 ± 0.15 and 1.18 ± 0.08 were calculated for protons and electrons, respectively, in a low hydroxyl scavenging environment containing 1 mM Tris-HCl for SSB induction. In higher hydroxyl scavenging capacity environments (above 1.1 × 106 s-1), no significant differences in DNA damage induction were found between radiation modalities when using SSB induction as a measure of RBE. Considering DSB induction, significant differences were only found between X-rays and 35 MeV electrons, with an RBEDSB of 1.72 ± 0.91 for 35 MeV electrons, indicating that electrons result in significantly more SSBs and DSBs per unit of dose than 300 kVp X-rays.

15.
Front Mol Biosci ; 10: 1138594, 2023.
Article de Anglais | MEDLINE | ID: mdl-37122563

RÉSUMÉ

Ewing Sarcoma (EWS) is the second most common osseous malignancy in children and young adults after osteosarcoma, while it is the fifth common osseous malignancy within adult age population. The clinical presentation of EWS is quite often non-specific, with the most common symptoms at presentation consisting of pain, swelling or general discomfort. The dearth of clinically relevant diagnostic or predictive biomarkers continues to remain a pressing clinical challenge. Identification of tumor specific biomarkers can lend towards an early diagnosis, expedited initiation of therapy, monitoring of therapeutic response, and early detection of recurrence of disease. We carried-out a complex analysis of cell lines and cell line derived small extracellular vesicles (sEVs) using label-free-based Quantitative Proteomic Profiling with an intent to determine shared and distinct features of these tumor cells and their respective sEVs. We analyzed EWS cells with different EWS-ETS fusions (EWS-FLI1 type I, II, and III and EWS-ERG) and their corresponding sEVs. Non-EWS controls included osteosarcoma, rhabdomyosarcoma, and benign cells, i.e., osteoid osteoma and mesenchymal stem cells. Proteomic profiling identified new shared markers between cells and their corresponding cell-derived sEVs and markers which were exclusively enriched in EWS-derived sEVs. These exo-biomarkers identified were validated by in silico approaches of publicly available protein databases and by capillary electrophoresis based western analysis (Wes). Here, we identified a protein biomarker named UGT3A2 and found its expression highly specific to EWS cells and their sEVs compared to control samples. Clinical validation of UGT3A2 expression in patient tumor tissues and plasma derived sEV samples demonstrated its specificity to EWS, indicating its potential as a EWS biomarker.

16.
Physiol Genomics ; 55(4): 168-178, 2023 04 01.
Article de Anglais | MEDLINE | ID: mdl-36878491

RÉSUMÉ

Non-small cell lung cancers (NSCLCs) demonstrate intrinsic resistance to cell death, even after chemotherapy. Previous work suggested defective nuclear translocation of active caspase-3 in observed resistance to cell death. We have identified mitogen-activated protein kinase-activated protein kinase 2 (MK2; encoded by the gene MAPKAPK2) is required for caspase-3 nuclear translocation in the execution of apoptosis in endothelial cells. The objective was to determine MK2 expression in NSCLCs and the association between MK2 and clinical outcomes in patients with NSCLC. Clinical and MK2 mRNA data were extracted from two demographically distinct NSCLC clinical cohorts, North American (The Cancer Genome Atlas, TCGA) and East Asian (EA). Tumor responses following first round of chemotherapy were dichotomized as clinical response (complete response, partial response, and stable disease) or progression of disease. Multivariable survival analyses were performed using Cox proportional hazard ratios and Kaplan-Meier curves. NSCLC exhibited lower MK2 expression than SCLC cell lines. In patients, lower tumor MK2 transcript levels were observed in those presenting with late-stage NSCLC. Higher MK2 expression was associated with clinical response following initial chemotherapy and independently associated with improved 2-yr survival in two distinct cohorts, 0.52 (0.28-0.98) and 0.1 (0.01-0.81), TCGA and EA, respectively, even after adjusting for common oncogenic driver mutations. Survival benefit of higher MK2 expression was unique to lung adenocarcinoma when comparing across various cancers. This study implicates MK2 in apoptosis resistance in NSCLC and suggests prognostic value of MK2 transcript levels in patients with lung adenocarcinoma.


Sujet(s)
Adénocarcinome pulmonaire , Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Humains , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/génétique , Caspase-3/usage thérapeutique , Cellules endothéliales , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique
17.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L700-L711, 2023 05 01.
Article de Anglais | MEDLINE | ID: mdl-36976920

RÉSUMÉ

We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Humains , Apoptose , Caspase-3/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , p38 Mitogen-Activated Protein Kinases/métabolisme , Phosphorylation , Protein-Serine-Threonine Kinases/métabolisme
18.
bioRxiv ; 2023 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-36778394

RÉSUMÉ

Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease, and decreased survival. Lack of risk stratification strategies hamper liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether inflammatory liver injury caused by post-LT NASH would yield a unique degradome profile, predictive of severe post-LT NASH fibrosis, we performed a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without). Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ∼2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly-changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (∼15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. Both The plasma degradome profile of post-LT patients yields stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.

19.
J Extracell Vesicles ; 12(2): e12307, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36754903

RÉSUMÉ

Extracellular vesicles (EVs) contain more than 100 proteins. Whether there are EVs proteins that act as an 'organiser' of protein networks to generate a new or different biological effect from that identified in EV-producing cells has never been demonstrated. Here, as a proof-of-concept, we demonstrate that EV-G12D-mutant KRAS serves as a leader that forms a protein complex and promotes lung inflammation and tumour growth via the Fn1/IL-17A/FGF21 axis. Mechanistically, in contrast to cytosol derived G12D-mutant KRAS complex from EVs-producing cells, EV-G12D-mutant KRAS interacts with a group of extracellular vesicular factors via fibronectin-1 (Fn1), which drives the activation of the IL-17A/FGF21 inflammation pathway in EV recipient cells. We show that: (i), depletion of EV-Fn1 leads to a reduction of a number of inflammatory cytokines including IL-17A; (ii) induction of IL-17A promotes lung inflammation, which in turn leads to IL-17A mediated induction of FGF21 in the lung; and (iii) EV-G12D-mutant KRAS complex mediated lung inflammation is abrogated in IL-17 receptor KO mice. These findings establish a new concept in EV function with potential implications for novel therapeutic interventions in EV-mediated disease processes.


Sujet(s)
Vésicules extracellulaires , Tumeurs du poumon , Pneumopathie infectieuse , Souris , Animaux , Interleukine-17/métabolisme , Interleukine-17/usage thérapeutique , Protéines proto-oncogènes p21(ras)/génétique , Protéines proto-oncogènes p21(ras)/métabolisme , Protéines mutantes/métabolisme , Protéines mutantes/usage thérapeutique , Vésicules extracellulaires/métabolisme , Tumeurs du poumon/traitement médicamenteux , Pneumopathie infectieuse/génétique
20.
Int J Radiat Oncol Biol Phys ; 116(4): 916-926, 2023 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-36642109

RÉSUMÉ

PURPOSE: In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. METHODS AND MATERIALS: We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. RESULTS: Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. CONCLUSIONS: These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.


Sujet(s)
Protonthérapie , Protons , Humains , Efficacité biologique relative , Planification de radiothérapie assistée par ordinateur/méthodes , Protonthérapie/méthodes , Transfert linéique d'énergie , Méthode de Monte Carlo
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE