Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mar Pollut Bull ; 195: 115333, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37659382

RÉSUMÉ

This work focuses on the dynamics and retention of microplastics (MP) in the Mediterranean. MP manta-net trawls were performed in autumn 2019 north of the Balearic Islands and along the Balearic Front (BF). Lagrangian modelling was used to find the MP collected origin during the campaign. These combined results show that North of Mallorca is a temporary retention zone of 3 months variability, with MP origin being the Northern Current (NC) and the Gulf of Lion (GOL). Retention processes were less clear along the BF, due to frontal dynamics together with the strong northerly winds. However, it appears that the origin can differ between the North (i.e. the large North-Westerly basin, including the GOL and the NC path) and the South (short distances around the zone) of this front. In both areas, the wind and the current variability are strongly conditioning the existence and position of the MP concentration zones.


Sujet(s)
Microplastiques , Polluants chimiques de l'eau , Matières plastiques/analyse , Mer Méditerranée , Surveillance de l'environnement/méthodes , Vent , Polluants chimiques de l'eau/analyse
2.
Environ Sci Technol ; 53(3): 1157-1164, 2019 02 05.
Article de Anglais | MEDLINE | ID: mdl-30575384

RÉSUMÉ

Estimates of cumulative plastic inputs into the oceans are expressed in hundred million tons, whereas the total mass of microplastics afloat at sea is 3 orders of magnitude below this. This large gap is evidence of our ignorance about the fate of plastics, as well as transformations and sinks in the oceans. One of the current challenges consists of identifying and quantifying plastic particles at the microscale, the small microplastics (SMP, 25-1000 µm). The aim of the present study is to investigate SMP concentration in count and in mass at the sea surface in the North Atlantic subtropical gyre during the sea campaign Expedition 7 th Continent. After isolation, SMP were characterized by micro-Fourier-transform infrared spectroscopy. Microplastic distribution was modeled by a wind-driven vertical mixing correction model taking into account individual particle properties (dimension, shape and density). We demonstrate that SMP buoyancy is significantly decreased compared to the large microplastics (LMP, 1-5 mm) and consequently more susceptible to vertical transport. The uncorrected LMP concentration in count was between 13 000 and 174 000 pieces km-2, and was between 5 and 170 times more abundant for SMP. With a wind-driven vertical mixing correction, we estimated that SMP were 300 to 70 000 times more abundant than LMP. When discussing this in terms of weight after correction, LMP concentrations were between 50 and 1000 g km-2, and SMP concentrations were between 5 and 14 000 g km-2.


Sujet(s)
Matières plastiques , Polluants chimiques de l'eau , Surveillance de l'environnement , Océans et mers , Spectroscopie infrarouge à transformée de Fourier , Vent
4.
Nature ; 521(7550): 65-9, 2015 May 07.
Article de Anglais | MEDLINE | ID: mdl-25951285

RÉSUMÉ

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...