Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Microbiology (Reading) ; 154(Pt 8): 2513-2521, 2008 Aug.
Article de Anglais | MEDLINE | ID: mdl-18667584

RÉSUMÉ

The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis.


Sujet(s)
Burkholderia cepacia complex/métabolisme , Métabolisme glucidique , Oignons/métabolisme , Polyosides bactériens/biosynthèse , Polyols/métabolisme , Burkholderia cepacia complex/génétique , Oignons/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/métabolisme , Polyosides bactériens/génétique
2.
New Phytol ; 179(1): 104-115, 2008.
Article de Anglais | MEDLINE | ID: mdl-18393951

RÉSUMÉ

Mixed-linkage (1-->3,1-->4)-beta-d-glucan (MLG) is a hemicellulose reputedly confined to certain Poales. Here, the taxonomic distribution of MLG, and xyloglucan, especially in early-diverging pteridophytes, has been re-investigated. Polysaccharides were digested with lichenase and xyloglucan endoglucanase (XEG), which specifically hydrolyse MLG and xyloglucan, respectively. The oligosaccharides produced were analysed by thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and alkaline peeling. Lichenase yielded oligo-beta-glucans from all Equisetum species tested (Equisetum arvense, Equisetum fluviatile, Equisetum scirpoides, Equisetum sylvaticum and Equisetum xtrachyodon). The major product was the tetrasaccharide beta-glucosyl-(1-->4)-beta-glucosyl-(1-->4)-beta-glucosyl-(1-->3)-glucose (G4G4G3G), which was converted to cellotriose by alkali, confirming its structure. Minor products included G3G, G4G3G and a nonasaccharide. By contrast, poalean MLGs yielded G4G3G > G4G4G3G > nonasaccharide > dodecasaccharide. No other pteridophytes tested contained MLG, including Psilotum and eusporangiate ferns. No MLG was found in lycopodiophytes, bryophytes, Chara or Nitella. XEG digestion showed that Equisetum xyloglucan has unusual repeat units. Equisetum, an exceedingly isolated genus whose closest living relatives diverged > 380 million years ago, has evolved MLG independently of the Poales. Equisetum and poalean MLGs share basic structural motifs but also exhibit clear-cut differences. Equisetum MLG is firmly wall-bound, and may tether neighbouring microfibrils. It is also suggested that MLG acts as a template for silica deposition, characteristic of grasses and horsetails.


Sujet(s)
Paroi cellulaire/composition chimique , Equisetum/composition chimique , Polyosides/physiologie , bêta-Glucanes/analyse , Chromatographie en phase liquide à haute performance , Chromatographie sur couche mince , Equisetum/génétique , Equisetum/métabolisme , Évolution moléculaire , Glucanes/analyse , Glucanes/physiologie , Phylogenèse , Polyosides/analyse , Polyosides/composition chimique , Hydroxyde de sodium/composition chimique , Xylanes/analyse , bêta-Glucanes/composition chimique , bêta-Glucanes/métabolisme
3.
Environ Sci Technol ; 36(17): 3772-8, 2002 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-12322750

RÉSUMÉ

The effects of tides, bioturbating organisms, and periods of anoxia on metal fluxes from contaminated harbor sediments in a shallow tidal estuarine bay were studied, together with capping technology options for the containment of metal contaminants. Zinc fluxes from the sediments were high, ranging from 10 to 89 mg of Zn m(-2) day(-1). In the absence of capping, experiments in corer-reactors showed that simulated tidal processes increased zinc fluxes 5-fold. Fluxes were also greater in the presence of sediment-dwelling organisms. If organisms were removed, and recolonizing organisms later added, their bioturbation activities initially lowered zinc fluxes, but fluxes gradually reached steady state at the higher levels seen previously. Capping materials physically isolate contaminated sediments, provide a binding substrate for metals released from the sediment and importantly create an anoxic environment below the cap, which stimulates the formation of insoluble metal sulfides. Clean sediment (5 mm) was the most effective capping material in reducing zinc fluxes. Zeolite/sand mixtures (10 mm) also greatly reduced these fluxes, but significant breakthrough of zinc occurred after 2 weeks. Sand (20 mm) was not effective. The presence of organisms disturbed capping materials and increased zinc fluxes. Installed capping materials should have depths of >30 cm to minimize organisms burrowing to contaminated sediments beneath.


Sujet(s)
Pollution de l'environnement/prévention et contrôle , Sédiments géologiques/composition chimique , Métaux/analyse , Polluants chimiques de l'eau/analyse , Nouvelle-Galles du Sud , Silice/composition chimique , Mouvements de l'eau , Zéolites/composition chimique , Zinc/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE