Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biochem Biophys Rep ; 28: 101116, 2021 Dec.
Article de Anglais | MEDLINE | ID: mdl-34485713

RÉSUMÉ

BACKGROUND: Even though members of the family of adhesion/growth-regulatory galectins are increasingly detected to be co-expressed, they are still being routinely tested separately. The recent discovery of heterodimer formation among galectins-1, -3, and -7 in mixtures prompts further study of their functional activities in mixtures. METHODS: Cell agglutination, galectin binding to cells, as well as effects on cell proliferation, onset of apoptosis and migration were determined in assays using various cell types and mixtures of galectins-1, -3, and -7. RESULTS: Evidence for a more than additive increases of experimental parameters was consistently obtained. CONCLUSION: Testing galectins in mixtures simulates the situation of co-expression in situ and reveals unsuspected over-additive activities. This new insight is relevant for analyzing galectin functionality in (patho)physiological conditions.

2.
Int J Hyperthermia ; 27(1): 42-52, 2011.
Article de Anglais | MEDLINE | ID: mdl-21204622

RÉSUMÉ

The purpose of this study was to delineate the mechanisms by which stromal components of cancer may induce tumour thermotolerance and exploit alterations in stromal and tumour physiology to enhance radiation therapy. The vascular thermoresponse was monitored by daily one-hour 41.5°C heatings in two murine solid tumour models, SCK murine mammary carcinoma and B16F10 melanoma. A transient increase was seen in overall tumour oxygenation for 2-3 days, followed by a progressive decline in tumour pO(2) upon continued daily heatings. Vascular thermotolerance was further studied by treating tumours with different heating strategies, i.e. (1) a single 60 min 41.5°C treatment; (2) two consecutive daily treatments of 41.5°C for 60 min; (3) a single 60 min 43°C treatment or (4) two days of 41.5°C for 60 min followed by treatment with 43°C for 60 min on the third day. Pre-heating tumours with mild temperature hyperthermia induced vascular thermotolerance, which was accompanied by evidence of vessel normalisation, i.e. a decrease in microvessel density and an increase in pericyte coverage. Rational scheduling of fractionated radiation during heat-induced increases in tumour oxygen levels rendered a significantly greater, synergistic, tumour growth inhibition. In vitro clonogenic survival responses of the individual cell types associated (endothelial cells, fibroblasts, pericytes and tumour cells) indicated only a direct cellular thermotolerance in endothelial cells. Overall, this suggests that tumour thermotolerance is a physiological phenomenon mediated through improvement of functional vasculature.


Sujet(s)
Hyperthermie provoquée , Tumeurs/vascularisation , Animaux , Association thérapeutique , Femelle , Mâle , Tumeurs expérimentales de la mamelle/vascularisation , Tumeurs expérimentales de la mamelle/physiopathologie , Tumeurs expérimentales de la mamelle/radiothérapie , Tumeurs expérimentales de la mamelle/thérapie , Souris , Tumeurs/physiopathologie , Tumeurs/radiothérapie , Tumeurs/thérapie , Oxygène/métabolisme , Pression partielle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE