Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Chem Chem Phys ; 25(26): 17403-17409, 2023 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-37350183

RÉSUMÉ

The decay dynamics of 2-aminopyridine and 3-aminopyridine excited to the S1 state is investigated using femtosecond time-resolved photoelectron imaging. The lifetime of the S1 state for both molecules shows a rapid decrease with the increase of the vibrational energy. It is shown that, besides intersystem crossing to the lower-lying triplet state of T1, the decay to the ground state (S0) via internal conversion through a conical intersection plays an increasingly important role and becomes dominant for vibrational states well above the S1 state origin. The comparison between 2-aminopyridine and 3-aminopyridine suggests that the intramolecular hydrogen bonding between a hydrogen atom of the NH2 group and the heterocyclic nitrogen atom in 2-aminopyridine effectively hinders the ring deformation at lower vibrational states which is required for the wavepacket to reach the S1/S0 conical intersection, and therefore slows down the S1 to S0 internal conversion.

2.
Phys Chem Chem Phys ; 24(37): 22710-22715, 2022 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-36106839

RÉSUMÉ

The S1(1ππ*) state decay dynamics of 2-pyridone excited around the 000 band origin is investigated using femtosecond time-resolved photoelectron imaging technique. At a pump wavelength of 334.0 nm, the vibrational ground state and a few low energy vibrational states covered by the bandwidth of the pump laser pulses are excited. The lifetimes of the vibrational states show strong dependence on the vibrational energy and mode. A quantum beat between two lowest energy vibrational states is also observed. This study provides quantitative information about the vibrational-state dependent lifetime of the S1 state of 2-pyridone.


Sujet(s)
Lasers , Vibration , Électronique , Pyridones
3.
Phys Chem Chem Phys ; 23(32): 17625-17633, 2021 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-34369952

RÉSUMÉ

The excited-state decay dynamics of 2-ethylpyrrole following UV excitation in the wavelength range of 254.8-218.0 nm is investigated in detail using the femtosecond time-resolved photoelectron imaging method. The time-resolved photoelectron spectra and photoelectron angular distributions at all pump wavelengths are carefully analysed and the following picture is derived: at the longest pump wavelengths (254.8, 248.3 and 246.1 nm), 2-ethylpyrrole is excited to the S1(1πσ*) state having a lifetime of about 50 fs. At 248.3, 246.1 and 237.4 nm, another excited state of Rydberg character is excited. The lifetime of this state is ∼570 fs at 237.4 nm and becomes slightly longer at other two pump wavelengths. At the shortest pump wavelengths (230.8 and 218.0 nm), 2-ethylpyrrole is excited to a state which is tentatively assigned to the 11ππ* state, having a lifetime of 75 ± 15 and 48 ± 10 fs for the longer and shorter pump wavelengths, respectively. Internal conversion to the S1(1πσ*) state might be one of the decay mechanisms of the 11ππ* state.

4.
Phys Chem Chem Phys ; 21(27): 15040-15045, 2019 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-31241077

RÉSUMÉ

The ultrafast decay dynamics of water molecules excited to D[combining tilde]'1B1 and D[combining tilde]''1A2 states is studied by combining two-photon excitation and time-resolved photoelectron imaging methods. The lifetime of the D[combining tilde]'1B1(000) state of H2O (D2O) is determined to be 1.54 ± 0.1 (22.6 ± 1.6) ps, consistent with a previous high-resolution spectroscopic study. The H2O D[combining tilde]''1A2(000) state decays with a lifetime of 4.1 ± 0.2 ps, while in the D2O D[combining tilde]''1A2(000) state, two independent decay pathways are observed, with time constants of 0.55 ± 0.1 and 13 ± 1 ps, respectively. The former is proposed to be associated with a hitherto undocumented D[combining tilde]'' → C[combining tilde] pathway, induced by Coriolis interaction.

5.
Phys Chem Chem Phys ; 20(22): 15015-15021, 2018 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-29664487

RÉSUMÉ

The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

6.
Phys Chem Chem Phys ; 19(43): 29146-29152, 2017 Nov 08.
Article de Anglais | MEDLINE | ID: mdl-29083429

RÉSUMÉ

The ultrafast excited-state dynamics of 2,4-dimethylpyrrole following excitation at wavelengths in the range of 255.8-199.7 nm are studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (255.8, 250.0, 246.0 and 242.0 nm) results in population of the S1(1πσ*) state, which decays out of the photoionization window in less than 30 fs. At 237.7 nm, the second 1πσ* state is excited, which decays in about 130 fs. At shorter pump wavelengths (231.8, 224.8, 217.5 and 199.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited states to the 1π3p Rydberg states, which decay in about 60 fs, with internal conversion to the S1(1πσ*) state as one of the decay channels. The lifetimes of these 1π3p Rydberg states vary little with the pump wavelengths in this wavelength range.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE