Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
1.
IEEE Trans Pattern Anal Mach Intell ; 44(7): 3523-3542, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-33596172

RÉSUMÉ

Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of deep learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions.


Sujet(s)
Apprentissage profond , Robotique , Algorithmes , Traitement d'image par ordinateur/méthodes ,
2.
Article de Anglais | MEDLINE | ID: mdl-34337587

RÉSUMÉ

The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. By October 2020, more than 44 million people were infected, and more than 1,000,000 deaths were reported. Computed Tomography (CT) images can be used as an alternative to the time-consuming RT-PCR test, to detect COVID-19. In this work we propose a segmentation framework to detect chest regions in CT images, which are infected by COVID-19. An architecture similar to a Unet model was employed to detect ground glass regions on a voxel level. As the infected regions tend to form connected components (rather than randomly distributed voxels), a suitable regularization term based on 2D-anisotropic total-variation was developed and added to the loss function. The proposed model is therefore called "TV-Unet". Experimental results obtained on a relatively large-scale CT segmentation dataset of around 900 images, incorporating this new regularization term leads to a 2% gain on overall segmentation performance compared to the Unet trained from scratch. Our experimental analysis, ranging from visual evaluation of the predicted segmentation results to quantitative assessment of segmentation performance (precision, recall, Dice score, and mIoU) demonstrated great ability to identify COVID-19 associated regions of the lungs, achieving a mIoU rate of over 99%, and a Dice score of around 86%.

3.
Sensors (Basel) ; 21(9)2021 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-33925371

RÉSUMÉ

Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by a classifier trained on a database of images or videos. Most of these works perform reasonably well on datasets of images captured in a controlled condition but fail to perform as well on more challenging datasets with more image variation and partial faces. In recent years, several works proposed an end-to-end framework for facial expression recognition using deep learning models. Despite the better performance of these works, there are still much room for improvement. In this work, we propose a deep learning approach based on attentional convolutional network that is able to focus on important parts of the face and achieves significant improvement over previous models on multiple datasets, including FER-2013, CK+, FERG, and JAFFE. We also use a visualization technique that is able to find important facial regions to detect different emotions based on the classifier's output. Through experimental results, we show that different emotions are sensitive to different parts of the face.


Sujet(s)
Reconnaissance faciale , Émotions , Face , Expression faciale ,
4.
Comput Math Methods Med ; 2021: 6927985, 2021.
Article de Anglais | MEDLINE | ID: mdl-33680071

RÉSUMÉ

COVID-19 has led to a pandemic, affecting almost all countries in a few months. In this work, we applied selected deep learning models including multilayer perceptron, random forest, and different versions of long short-term memory (LSTM), using three data sources to train the models, including COVID-19 occurrences, basic information like coded country names, and detailed information like population, and area of different countries. The main goal is to forecast the outbreak in nine countries (Iran, Germany, Italy, Japan, Korea, Switzerland, Spain, China, and the USA). The performances of the models are measured using four metrics, including mean average percentage error (MAPE), root mean square error (RMSE), normalized RMSE (NRMSE), and R 2. The best performance was found for a modified version of LSTM, called M-LSTM (winner model), to forecast the future trajectory of the pandemic in the mentioned countries. For this purpose, we collected the data from January 22 till July 30, 2020, for training, and from 1 August 2020 to 31 August 2020, for the testing phase. Through experimental results, the winner model achieved reasonably accurate predictions (MAPE, RMSE, NRMSE, and R 2 are 0.509, 458.12, 0.001624, and 0.99997, respectively). Furthermore, we stopped the training of the model on some dates related to main country actions to investigate the effect of country actions on predictions by the model.


Sujet(s)
COVID-19/épidémiologie , Apprentissage profond , Pandémies , SARS-CoV-2 , Biologie informatique , Bases de données factuelles , Prévision/méthodes , Humains , Iran/épidémiologie , Concepts mathématiques , Modèles statistiques , , Pandémies/statistiques et données numériques , Facteurs temps
5.
Med Image Anal ; 65: 101794, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32781377

RÉSUMÉ

The COVID-19 pandemic is causing a major outbreak in more than 150 countries around the world, having a severe impact on the health and life of many people globally. One of the crucial step in fighting COVID-19 is the ability to detect the infected patients early enough, and put them under special care. Detecting this disease from radiography and radiology images is perhaps one of the fastest ways to diagnose the patients. Some of the early studies showed specific abnormalities in the chest radiograms of patients infected with COVID-19. Inspired by earlier works, we study the application of deep learning models to detect COVID-19 patients from their chest radiography images. We first prepare a dataset of 5000 Chest X-rays from the publicly available datasets. Images exhibiting COVID-19 disease presence were identified by board-certified radiologist. Transfer learning on a subset of 2000 radiograms was used to train four popular convolutional neural networks, including ResNet18, ResNet50, SqueezeNet, and DenseNet-121, to identify COVID-19 disease in the analyzed chest X-ray images. We evaluated these models on the remaining 3000 images, and most of these networks achieved a sensitivity rate of 98% ( ±  3%), while having a specificity rate of around 90%. Besides sensitivity and specificity rates, we also present the receiver operating characteristic (ROC) curve, precision-recall curve, average prediction, and confusion matrix of each model. We also used a technique to generate heatmaps of lung regions potentially infected by COVID-19 and show that the generated heatmaps contain most of the infected areas annotated by our board certified radiologist. While the achieved performance is very encouraging, further analysis is required on a larger set of COVID-19 images, to have a more reliable estimation of accuracy rates. The dataset, model implementations (in PyTorch), and evaluations, are all made publicly available for research community at https://github.com/shervinmin/DeepCovid.git.


Sujet(s)
Infections à coronavirus/imagerie diagnostique , Jeux de données comme sujet , Apprentissage profond , Pneumopathie virale/imagerie diagnostique , Interprétation d'images radiographiques assistée par ordinateur , Radiographie thoracique , Betacoronavirus , COVID-19 , Interprétation statistique de données , Diagnostic différentiel , Humains , , Pandémies , Valeur prédictive des tests , SARS-CoV-2 , Sensibilité et spécificité
6.
ArXiv ; 2020 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-32766387

RÉSUMÉ

The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of mid-July 2020, more than 12 million people were infected, and more than 570,000 death were reported. Computed Tomography (CT) images can be used as an alternative to the time-consuming RT-PCR test, to detect COVID-19. In this work we propose a segmentation framework to detect chest regions in CT images, which are infected by COVID-19. We use an architecture similar to U-Net model, and train it to detect ground glass regions, on pixel level. As the infected regions tend to form a connected component (rather than randomly distributed pixels), we add a suitable regularization term to the loss function, to promote connectivity of the segmentation map for COVID-19 pixels. 2D-anisotropic total-variation is used for this purpose, and therefore the proposed model is called "TV-UNet". Through experimental results on a relatively large-scale CT segmentation dataset of around 900 images, we show that adding this new regularization term leads to 2\% gain on overall segmentation performance compared to the U-Net model. Our experimental analysis, ranging from visual evaluation of the predicted segmentation results to quantitative assessment of segmentation performance (precision, recall, Dice score, and mIoU) demonstrated great ability to identify COVID-19 associated regions of the lungs, achieving a mIoU rate of over 99\%, and a Dice score of around 86\%.

7.
IEEE Trans Med Imaging ; 38(11): 2545-2555, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-30892204

RÉSUMÉ

In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.


Sujet(s)
Commotion de l'encéphale/imagerie diagnostique , Apprentissage profond , Imagerie par résonance magnétique de diffusion/méthodes , Interprétation d'images assistée par ordinateur/méthodes , Adolescent , Adulte , Algorithmes , Encéphale/imagerie diagnostique , Bases de données factuelles , Humains , Adulte d'âge moyen , Courbe ROC , Jeune adulte
8.
IEEE Trans Image Process ; 28(7): 3192-3204, 2019 Jul.
Article de Anglais | MEDLINE | ID: mdl-30703020

RÉSUMÉ

Signal decomposition is a classical problem in signal processing, which aims to separate an observed signal into two or more components, each with its own property. Usually, each component is described by its own subspace or dictionary. Extensive research has been done for the case where the components are additive, but in real-world applications, the components are often non-additive. For example, an image may consist of a foreground object overlaid on a background, where each pixel either belongs to the foreground or the background. In such a situation, to separate signal components, we need to find a binary mask which shows the location of each component. Therefore, it requires solving a binary optimization problem. Since most of the binary optimization problems are intractable, we relax this problem to the approximated continuous problem and solve it by alternating optimization technique. We show the application of the proposed algorithm for three applications: separation of text from a background in images, separation of moving objects from a background undergoing global camera motion in videos, and separation of sinusoidal and spike components in 1-D signals. We demonstrate in each case that considering the non-additive nature of the problem can lead to a significant improvement.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1267-1270, 2018 Jul.
Article de Anglais | MEDLINE | ID: mdl-30440621

RÉSUMÉ

Mild traumatic brain injury is a growing public health problem with an estimated incidence of over 1.7 million people annually in US. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. This work aims to directly use diffusion MR images obtained within one month of trauma to detect injury, by incorporating deep learning techniques. To overcome the challenge due to limited training data, we describe each brain region using the bag of word representation, which specifies the distribution of representative patch patterns. We apply a convolutional auto-encoder to learn the patch-level features, from overlapping image patches extracted from the MR images, to learn features from diffusion MR images of brain using an unsupervised approach. Our experimental results show that the bag of word representation using patch level features learnt by the auto encoder provides similar performance as that using the raw patch patterns, both significantly outperform earlier work relying on the mean values of MR metrics in selected brain regions.


Sujet(s)
Apprentissage machine non supervisé , Encéphale , Apprentissage profond , Imagerie par résonance magnétique de diffusion
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE