Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
1.
J Infect Chemother ; 30(6): 481-487, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38042299

RÉSUMÉ

INTRODUCTION: Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). The Miyazaki Prefecture has the highest number of SFTS cases in Japan and requires countermeasures for prevention. In this study, we aimed to conduct an epidemiological survey in Miyazaki Prefecture to determine the exposure conditions of SFTSV by measuring the seroprevalence among residents of Miyazaki and to evaluate the factors that influence the endemicity of SFTS. METHODS: The survey was conducted between June 2014 and April 2019 in all 26 municipalities in Miyazaki Prefecture. SFTSV antibodies were detected using an enzyme-linked immunosorbent assay in the blood samples of 6013 residents (3184 men and 2829 women). A questionnaire-based survey of the living environment was also conducted. RESULTS: Multiple logistic regression analysis revealed that age and occupation were significant factors related to the proportion of participants with an optical density (OD) value > 0.2 and a seroprevalence of 0.9 % (54/6013). Seven seropositive individuals (0.1 %) with an OD value of >0.4 were identified (three men and four women, aged 54-69 years), and all were asymptomatic. One participant had a higher OD than the positive control. CONCLUSION: Although SFTS is endemic in Miyazaki Prefecture, Japan, its seroprevalence is relatively low. Since some risk areas in Miyazaki prefecture have been identified, it is important to enhance awareness of SFTS in residences and reduce contact with ticks, especially in high-risk areas.

2.
J Virol ; 97(10): e0101123, 2023 10 31.
Article de Anglais | MEDLINE | ID: mdl-37796123

RÉSUMÉ

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Sujet(s)
Génome viral , Mutation , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Humains , COVID-19/virologie , SARS-CoV-2/génétique , SARS-CoV-2/pathogénicité , SARS-CoV-2/physiologie , Glycoprotéine de spicule des coronavirus/génétique , Génome viral/génétique
3.
Sci Transl Med ; 15(711): eadi2623, 2023 08 30.
Article de Anglais | MEDLINE | ID: mdl-37647387

RÉSUMÉ

The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.


Sujet(s)
COVID-19 , Animaux , SARS-CoV-2 , Angiotensin-converting enzyme 2 , Anticorps monoclonaux , Macaca fascicularis
4.
Cancer Immunol Res ; 11(9): 1266-1279, 2023 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-37432112

RÉSUMÉ

Clec4A4 is a C-type lectin receptor (CLR) exclusively expressed on murine conventional dendritic cells (cDC) to regulate their activation status. However, the functional role of murine Clec4A4 (mClec4A4) in antitumor immunity remains unclear. Here, we show that mClec4A4 serves as a negative immune checkpoint regulator to impair antitumor immune responses. Deficiency of mClec4A4 lead to a reduction in tumor development, accompanied by enhanced antitumor immune responses and amelioration of the immunosuppressive tumor microenvironment (TME) mediated through the enforced activation of cDCs in tumor-bearing mice. Furthermore, antagonistic mAb to human CLEC4A (hCLEC4A), which is the functional orthologue of mClec4A4, exerted protection against established tumors without any apparent signs of immune-related adverse events in hCLEC4A-transgenic mice. Thus, our findings highlight the critical role of mClec4A4 expressed on cDCs as a negative immune checkpoint molecule in the control of tumor progression and provide support for hCLEC4A as a potential target for immune checkpoint blockade in tumor immunotherapy.

6.
Cell Rep ; 42(5): 112431, 2023 05 30.
Article de Anglais | MEDLINE | ID: mdl-37099426

RÉSUMÉ

While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance.


Sujet(s)
Dysbiose , Immunité innée , Humains , Dysbiose/métabolisme , Lymphocytes/métabolisme , Intégrines alpha/métabolisme , Cellules dendritiques/métabolisme , Antibactériens/métabolisme , Muqueuse intestinale/métabolisme
8.
J Virol Methods ; 315: 114706, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36849053

RÉSUMÉ

Bovine leukemia virus (BLV) is the causative agent of a B-cell tumor called enzootic bovine leukosis. Preventing BLV spreading is required to reduce economic loss related to BLV infection of livestock. To quantify proviral load (PVL) more easily and rapidly, we developed a quantification system of PVL using droplet digital PCR (ddPCR). This method uses a multiplex TaqMan assay of the BLV provirus and housekeeping gene RPP30 for the quantification of BLV in BLV-infected cells. Furthermore, we combined ddPCR with DNA purification-free sample preparation (unpurified genomic DNA). The percentage of BLV-infected cells based on unpurified genomic DNA was highly correlated with that based on purified genomic DNA (correlation coefficient: 0.906). Thus, this new technique is a suitable method to quantify PVL of BLV-infected cattle in a large sample number.


Sujet(s)
Leucose bovine enzootique , Virus de la leucémie bovine , Animaux , Bovins , Provirus/génétique , Virus de la leucémie bovine/génétique , Leucose bovine enzootique/diagnostic , Réaction de polymérisation en chaîne/méthodes , ADN , Génomique
9.
mSphere ; 8(1): e0049322, 2023 02 21.
Article de Anglais | MEDLINE | ID: mdl-36625728

RÉSUMÉ

In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.


Sujet(s)
Leucose bovine enzootique , Virus de la leucémie bovine , Réaction de polymérisation en chaîne , Animaux , Bovins , Allèles , Maladies transmissibles/diagnostic , Maladies transmissibles/génétique , Prédisposition aux maladies , Leucose bovine enzootique/diagnostic , Leucose bovine enzootique/génétique , Marqueurs génétiques , Antigènes d'histocompatibilité de classe II/génétique , Virus de la leucémie bovine/génétique , Réaction de polymérisation en chaîne/méthodes
10.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Article de Anglais | MEDLINE | ID: mdl-36198317

RÉSUMÉ

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Sujet(s)
Angiotensin-converting enzyme 2 , COVID-19 , Anticorps antiviraux , Humains , Peptidyl-Dipeptidase A/génétique , Peptidyl-Dipeptidase A/métabolisme , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/métabolisme
11.
J Vet Med Sci ; 84(11): 1457-1460, 2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36171135

RÉSUMÉ

The bovine leukocyte antigen (BoLA) DRB3*009:02 allele is strongly associated with a low/undetectable bovine leukemia virus (BLV) proviral load. Understanding the status of cattle possessing DRB3*009:02 allele is key for BLV control by breeding. We performed a survey of DRB3*009:02-carrying cattle in two prefectures in Japan using a TaqMan assay developed previously. The allele was found in 3.8% (confidence interval (CI): 3.3-4.3) of 6020 Japanese Black female cattle. A prefecture-level difference was found: the allele was observed in 8.6% CI: 7.5-9.9) of 2242 cattle of the birth prefecture B in Kyushu/Okinawa region, and this percentage was significantly higher than those of prefecture C in Kyushu/Okinawa region (1.3% (CI: 0.4-3.4) of 319) and prefecture A in Chugoku region (0.9% (CI: 0.6-1.4) of 2741), respectively. Consideration on the difference in possession of DRB3*009:02 allele is needed to establish the more efficient control strategy of BLV infection in Japanese Black cattle.


Sujet(s)
Maladies des bovins , Leucose bovine enzootique , Virus de la leucémie bovine , Femelle , Bovins , Animaux , Virus de la leucémie bovine/génétique , Allèles , Japon/épidémiologie , Antigènes d'histocompatibilité de classe II/génétique , Antigènes viraux/génétique , Leucocytes , Maladies des bovins/épidémiologie , Maladies des bovins/génétique
12.
HLA ; 99(1): 12-24, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34837483

RÉSUMÉ

As genetically resistant individuals, the "elite controllers" (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)-DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real-time PCR assay and TaqMan MGB probes (DRB3*009:02-TaqMan assay). Using this system, we determined the percentage of DRB3*009:02-carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02-positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd-level screening for DRB3*009:02-carrying cattle. The DRB3*009:02-TaqMan assay showed high-discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02-carrying cattle in post-screening tests on individuals. We determined that the percentage of DRB3*009:02-carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02-carrying cattle. Thus, our findings support the use of BLV ECs in the field.


Sujet(s)
Bovins , Leucose bovine enzootique , Virus de la leucémie bovine , Allèles , Animaux , Bovins/génétique , Leucose bovine enzootique/diagnostic , Leucose bovine enzootique/génétique , Haplotypes , Antigènes d'histocompatibilité de classe II/génétique , Virus de la leucémie bovine/génétique , Charge virale
13.
Immunology ; 164(2): 266-278, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34003490

RÉSUMÉ

Foot-and-mouth disease (FMD) is a highly contagious, economically devastating disease of cloven-hooved animals. The development of long-lasting effective FMD vaccines would greatly benefit the global FMD control programme. Deep analysis of adaptive immunity in cattle vaccinated against FMD is technically challenging due to the lack of species-specific tools. In this study, we aimed to identify CD4+ T-cell epitopes in the FMD virus (FMDV) capsid and to phenotype the CD4+ T cells that recognize them using bovine major histocompatibility complex (BoLA) class II tetramer. A BoLA class II tetramer based on the DRA/DRB3*020:02 allele and FMDV antigen-stimulated PBMCs from bovine vaccinates were used to successfully identify four epitopes in the FMDV capsid, three of which have not been previously reported; two epitopes were identified in the structural protein VP1, one in VP3 and one in VP4. Specificity of the three novel epitopes was confirmed by proliferation assay. All epitope-expanded T-cell populations produced IFN-γ in vitro, indicating a long-lasting Th1 cell phenotype after FMD vaccination. VP3-specific CD4+ T cells exhibited the highest frequency amongst the identified epitopes, comprising >0·004% of the CD4+ T-cell population. CD45RO+ CCR7+ defined central memory CD4+ T-cell subpopulations were present in higher frequency in FMDV-specific CD4+ T-cell populations from FMD-vaccinated cattle ex vivo. This indicates an important role in maintaining cell adaptive immunity after FMD vaccination. Notably, FMDV epitope-loaded tetramers detected the presence of FMDV-specific CD4+ T cells in bovine PBMC more than four years after vaccination. This work contributes to our understanding of vaccine efficacy.


Sujet(s)
Lymphocytes T CD4+/immunologie , Virus de la fièvre aphteuse/immunologie , Fièvre aphteuse/immunologie , Antigènes d'histocompatibilité de classe II/immunologie , Vaccins antiviraux/immunologie , Animaux , Anticorps neutralisants/immunologie , Anticorps antiviraux/immunologie , Lymphocytes T CD4+/virologie , Protéines de capside/immunologie , Bovins , Cellules cultivées , Déterminants antigéniques des lymphocytes T/immunologie , Fièvre aphteuse/virologie , Agranulocytes/immunologie , Agranulocytes/virologie , Sérogroupe , Vaccination/méthodes
14.
Animals (Basel) ; 11(3)2021 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-33804456

RÉSUMÉ

Enzootic bovine leukosis is a lethal neoplastic disease caused by bovine leukemia virus (BLV), belongs to family Retroviridae. The BLV proviral load (PVL) represents the quantity of BLV genome that has integrated into the host's genome in BLV-infected cells. Bovine leukocyte antigen (BoLA) class II allelic polymorphisms are associated with PVLs in BLV-infected cattle. We sought to identify relationships between BoLA-DRB3 allelic heterozygosity and BLV PVLs among different cattle breeds. Blood samples from 598 BLV-infected cattle were quantified to determine their PVLs by real-time polymerase chain reaction. The results were confirmed by a BLV-enzyme-linked immunosorbent assay. Restriction fragment length polymorphism-polymerase chain reaction identified 22 BoLA-DRB3 alleles. Multivariate negative binomial regression modeling was used to test for associations between BLV PVLs and BoLA-DRB3 alleles. BoLA-DRB3.2*3, *7, *8, *11, *22, *24, and *28 alleles were significantly associated with low PVLs. BoLA-DRB3.2*10 was significantly associated with high PVLs. Some heterozygous allele combinations were associated with low PVLs (*3/*28, *7/*8, *8/*11, *10/*11, and *11/*16); others were associated with high PVLs (*1/*41, *10/*16, *10/*41, *16/*27, and *22/*27). Interestingly, the BoLA-DRB3.2*11 heterozygous allele was always strongly and independently associated with low PVLs. This is the first reported evidence of an association between heterozygous allelic combinations and BLV PVLs.

15.
Antibiotics (Basel) ; 10(3)2021 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-33652871

RÉSUMÉ

A cross-sectional study was used to identify and assess prevalence and phenotypic antimicrobial resistance (AMR) profiles of Escherichia coli and other enterobacteria isolated from healthy wildlife and livestock cohabiting at a 10,000 acres game ranch near Lusaka, Zambia. Purposive sampling was used to select wildlife and livestock based on similarities in behavior, grazing habits and close interactions with humans. Isolates (n = 66) from fecal samples collected between April and August 2018 (n = 84) were examined following modified protocols for bacteria isolation, biochemical identification, molecular detection, phylogenetic analysis, and antimicrobial susceptibility testing by disc diffusion method. Data were analyzed using R software, Genetyx ver.12 and Mega 6. Using Applied Profile Index 20E kit for biochemical identification, polymerase chain reaction assay and sequencing, sixty-six isolates were identified to species level, of which Escherichia coli (72.7%, 48/66), E. fergusonii (1.5%, 1/66), Shigella sonnei (22.7%, 14/66), Sh. flexinerri (1.5%, 1/66) and Enterobacteriaceae bacterium (1.5%, 1/66), and their relationships were illustrated in a phylogenetic tree. Phenotypic antimicrobial resistance or intermediate sensitivity expression to at least one antimicrobial agent was detected in 89.6% of the E. coli, and 73.3% of the Shigella isolates. The E. coli isolates exhibited the highest resistance rates to ampicillin (27%), ceftazidime (14.3%), cefotaxime (9.5%), and kanamycin (9.5%). Multidrug resistance (MDR) was detected in 18.8% of E. coli isolates while only 13.3% Shigella isolates showed MDR. The MDR was detected among isolates from impala and ostrich (wild animals in which no antimicrobial treatment was used), and in isolates from cattle, pigs, and goats (domesticated animals). This study indicates the possible transmission of drug-resistant microorganisms between animals cohabiting at the wildlife-livestock interface. It emphasizes the need for further investigation of the role of wildlife in the development and transmission of AMR, which is an issue of global concern.

16.
J Vet Med Sci ; 83(1): 134-141, 2021 Jan 21.
Article de Anglais | MEDLINE | ID: mdl-33177289

RÉSUMÉ

Interleukin 2 (IL-2) is a pleotropic cytokine and well-known as a T cell growth factor in immunology. It is now known to exert both immunostimulatory and immunosuppressive effects, optimizing immunological microenvironments for effector and regulatory T cell responses. The immunomodulatory role of IL-2 is critical for deciding whether or not T cell responses against specific antigens result in protection. We have established a mammalian cell line (HEK-293) stably expressing bovine IL-2 (boIL-2) (designated as HEK-293/boIL-2), using the piggyBac transposon system. The concentration of recombinant bovine IL-2 (rboIL-2) in the culture supernatant of HEK-293/boIL-2 reached 100 ng/ml on day 7 and showed similar proliferative activity to recombinant human IL-2 (rhuIL-2) for bovine peripheral mononuclear blood cells. Although rhuIL-2 has been often used to activate bovine T cells, our results indicate that characteristics of the T cell activation through rboIL-2 and huIL-2 appear slightly but significantly different. Interestingly, the rboIL-2/anti-boIL-2 monoclonal antibody (C5) (rboIL-2/C5) complex strongly induced proliferation of bovine NKp46+cells, natural killer (NK) cells, in vitro. This indicates that the rboIL-2/C5 complex could function as an IL-2 agonist specifically to increase the NK cell population, which in turn could enhance the activity of NK cells leading to protective immunity.


Sujet(s)
Interleukine-2 , Activation des lymphocytes , Animaux , Bovins , Cytokines , Cellules HEK293 , Humains , Interleukine-2/génétique , Protéines recombinantes/génétique , Lymphocytes T
17.
Trop Anim Health Prod ; 52(6): 3781-3788, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-33011908

RÉSUMÉ

Porcine epidemic diarrhea (PED) virus (PEDV) is a globally emerging and re-emerging epizootic swine virus that causes massive economic losses in the swine industry, with high mortality in piglets. In Vietnam, PED first emerged in 2009 and has now developed to an endemic stage. This is the first cross-sectional survey performed to evaluate the proportion of PEDV-positive swine farms in Vietnam from January 2018 to February 2019. Fecal samples from 327 pig farms in northern Vietnam were collected and tested for PEDV infection by reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method. The proportion of PEDV-positive farms was 30.9% and PEDV-positive farms were distributed throughout the study area. The highest proportion of PEDV-positive farms was 70% (7/10) among nucleus production type farms (P < 0.05). Higher proportions of PEDV-positive farms were found in the Northeast and Red River Delta areas, which are the major areas of pig production (P < 0.05). The proportion of PEDV-positive farms was higher among larger farms (P < 0.05). Our findings illustrate the high proportion of PEDV-positive farms in the Vietnamese pig population and will help to better understand the epidemiological dynamics of PED infection, to estimate impact, and establish and improve prevention and control measures.


Sujet(s)
Virus de la diarrhée porcine épidémique/isolement et purification , Maladies des porcs/virologie , Animaux , Infections à coronavirus/médecine vétérinaire , Études transversales , Diarrhée/médecine vétérinaire , Épidémies , Fèces/virologie , Techniques de diagnostic moléculaire , Techniques d'amplification d'acides nucléiques , Virus de la diarrhée porcine épidémique/génétique , Suidae , Maladies des porcs/épidémiologie , Vietnam/épidémiologie
18.
Pathogens ; 9(11)2020 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-33126749

RÉSUMÉ

The cattle industry is suffering economic losses caused by bovine leukemia virus (BLV) and enzootic bovine leukosis (EBL), the clinical condition associated with BLV infection. This pathogen spreads easily without detection by farmers and veterinarians due to the lack of obvious clinical signs. Cattle movement strongly contributes to the inter-farm transmission of BLV. This study quantified the farm-level risk of BLV introduction using a cattle movement analysis. A generalized linear mixed model predicting the proportion of BLV-infected cattle was constructed based on weighted in-degree centrality. Our results suggest a positive association between weighted in-degree centrality and the estimated number of introduced BLV-infected cattle. Remarkably, the introduction of approximately six cattle allowed at least one BLV-infected animal to be added to the farm in the worst-case scenario. These data suggest a high risk of BLV infection on farms with a high number of cattle being introduced. Our findings indicate the need to strengthen BLV control strategies, especially along the chain of cattle movement.

19.
Front Vet Sci ; 7: 433, 2020.
Article de Anglais | MEDLINE | ID: mdl-32851018

RÉSUMÉ

Porcine epidemic diarrhea virus (PEDV) causes enteritis, vomiting, watery diarrhea, and high mortality in suckling pigs, threatening the swine industry. Porcine epidemic diarrhea (PED) re-emerged globally in 2013 in many important swine-producing countries in Asia and the Americas. Several studies have identified the risk factors for the spread of PEDV in acute outbreaks. However, limited information is available on the risk factors for the transmission of PEDV in endemic regions. We hypothesized that poor biosecurity, location, and some social or cultural practices are the main risk factors for PEDV transmission in the Vietnamese pig population. The aim of this study was to evaluate the potential risk factors for the transmission of PEDV in an endemic area in Vietnam. In this case-control study, questionnaires containing 51 questions were completed for 92 PEDV-positive and 95 PEDV-negative farms. A logistic regression analysis was performed to assess the risk factors associated with PEDV infection. Province and the total number of pigs were included as random effects to determine their influence on the risk of PEDV infection. Twenty-nine variables of interest that have been associated with PEDV status were analyzed in a univariate analysis (P <0.20), with backward stepwise selection. Only three of these 29 variables in four models remained significant PEDV risk factors in the final model: farrow-to-wean production type, distance from the farm to the slaughterhouse (<1,000 m), and the presence of chickens on site (P <0.05). This is the first study to identify the main risk factors for PEDV infection in an endemic area. Our findings suggest that hygiene measures should be strictly implemented on farms for the effective control and prevention of PEDV infection.

20.
Antibiotics (Basel) ; 9(2)2020 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-32046117

RÉSUMÉ

In our previous study, extended spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBLEC) were isolated from healthy Thoroughbred racehorse feces samples in Japan. Some ESBL genes were predicted to be located on the conjugative plasmid. PCR-based replicon typing (PBRT) is a useful method to monitor and detect the association of replicons with specific plasmid-borne resistant genes. This study aimed to evaluate the plasmid replicon associated with ESBLEC isolated from healthy Thoroughbred racehorses at Japan Racing Association Training Centers in Japan. A total of 24 ESBLECs isolated from 23 (10.8%) individual Thoroughbred racehorse feces samples were used in this study. ESBL gene transfer was performed using a conjugation assay. Then, replicon types of ESBLEC isolates and their transconjugants were determined using PBRT. Pulsed-field gel electrophoresis (PFGE) was performed to look at the clonality of the ESBLECs isolates. ESBLECs were detected from 10.8% of healthy Thoroughbred racehorses. The blaCTX-M-2 was identified as the dominant type of ESBL gene, followed by blaCTX-M-1 and blaTEM-116. In this study, only the blaCTX-M-2 and the IncI1 plasmid were transferred to transconjugants. The PFGE results showed that ESBL genes were distributed in diversity of ESBLECs. This finding suggested that the IncI1 plasmid was associated with the dissemination of blaCTX-M-2 in Thoroughbred racehorses in Japan.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...