Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 33
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Photochem Photobiol Sci ; 22(9): 2153-2166, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37225911

RÉSUMÉ

Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280-315 nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Hétérochromatine/métabolisme , Rayons ultraviolets , Lumière du soleil
2.
Epigenomes ; 6(4)2022 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-36278680

RÉSUMÉ

The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (iCRAQ) and one based on deep learning (Nucl.Eye.D), and their evaluation using a collection of A. thaliana nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.

3.
Int J Mol Sci ; 21(18)2020 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-32932704

RÉSUMÉ

Ultraviolet (UV) light is a natural genotoxic agent leading to the formation of photolesions endangering the genomic integrity and thereby the survival of living organisms. To prevent the mutagenetic effect of UV, several specific DNA repair mechanisms are mobilized to accurately maintain genome integrity at photodamaged sites within the complexity of genome structures. However, a fundamental gap remains to be filled in the identification and characterization of factors at the nexus of UV-induced DNA damage, DNA repair, and epigenetics. This review brings together the impact of the epigenomic context on the susceptibility of genomic regions to form photodamage and focuses on the mechanisms of photolesions recognition through the different DNA repair pathways.


Sujet(s)
Altération de l'ADN/génétique , Génome/génétique , Rayons ultraviolets/effets indésirables , Animaux , Réparation de l'ADN/génétique , Épigenèse génétique/génétique , Humains
5.
Nucleic Acids Res ; 48(18): 10297-10312, 2020 10 09.
Article de Anglais | MEDLINE | ID: mdl-32941623

RÉSUMÉ

Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.


Sujet(s)
Épigenèse génétique/génétique , RNA polymerase III/génétique , ARN de transfert/génétique , Transcription génétique , Arabidopsis/génétique , Noyau de la cellule/génétique , Chromatine/génétique , Extinction de l'expression des gènes , Famille multigénique/génétique
7.
Nat Plants ; 6(6): 606-607, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32514142
9.
PLoS Genet ; 15(11): e1008476, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31738755

RÉSUMÉ

Plants are exposed to the damaging effect of sunlight that induces DNA photolesions. In order to maintain genome integrity, specific DNA repair pathways are mobilized. Upon removal of UV-induced DNA lesions, the accurate re-establishment of epigenome landscape is expected to be a prominent step of these DNA repair pathways. However, it remains poorly documented whether DNA methylation is accurately maintained at photodamaged sites and how photodamage repair pathways contribute to the maintenance of genome/methylome integrities. Using genome wide approaches, we report that UV-C irradiation leads to CHH DNA methylation changes. We identified that the specific DNA repair pathways involved in the repair of UV-induced DNA lesions, Direct Repair (DR), Global Genome Repair (GGR) and small RNA-mediated GGR prevent the excessive alterations of DNA methylation landscape. Moreover, we identified that UV-C irradiation induced chromocenter reorganization and that photodamage repair factors control this dynamics. The methylome changes rely on misregulation of maintenance, de novo and active DNA demethylation pathways highlighting that molecular processes related to genome and methylome integrities are closely interconnected. Importantly, we identified that photolesions are sources of DNA methylation changes in repressive chromatin. This study unveils that DNA repair factors, together with small RNA, act to accurately maintain both genome and methylome integrities at photodamaged silent genomic regions, strengthening the idea that plants have evolved sophisticated interplays between DNA methylation dynamics and DNA repair.


Sujet(s)
Altération de l'ADN/génétique , Méthylation de l'ADN/génétique , Réparation de l'ADN/génétique , Épigénome/génétique , Arabidopsis/génétique , Arabidopsis/effets des radiations , Chromatine/génétique , Chromatine/effets des radiations , Altération de l'ADN/effets des radiations , Méthylation de l'ADN/effets des radiations , Réparation de l'ADN/effets des radiations , Épigénome/effets des radiations , Génome végétal/génétique , Génome végétal/effets des radiations , Rayons ultraviolets
10.
Genes (Basel) ; 8(11)2017 Nov 09.
Article de Anglais | MEDLINE | ID: mdl-29120372

RÉSUMÉ

Land plants and other photosynthetic organisms (algae, bacteria) use the beneficial effect of sunlight as a source of energy for the photosynthesis and as a major source of information from the environment. However, the ultraviolet component of sunlight also produces several types of damage, which can affect cellular and integrity, interfering with growth and development. In order to reduce the deleterious effects of UV, photosynthetic organisms combine physiological adaptation and several types of DNA repair pathways to avoid dramatic changes in the structure. Therefore, plants may have obtained an evolutionary benefit from combining genome and surveillance processes, to efficiently deal with the deleterious effects of UV radiation. This review will present the different mechanisms activated upon UV exposure that contribute to maintain genome and integrity.

11.
Plant J ; 92(6): 1170-1181, 2017 Dec.
Article de Anglais | MEDLINE | ID: mdl-29078035

RÉSUMÉ

By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re-established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage-binding protein 2 (DDB2) and the ROS1-mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3'-phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1-mediated active DNA demethylation.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines nucléaires/métabolisme , Protéines d'Arabidopsis/génétique , Protéines Argonaute/génétique , Protéines Argonaute/métabolisme , Altération de l'ADN , Déméthylation de l'ADN , Méthylation de l'ADN , Protéines de liaison à l'ADN/génétique , Endonucleases/génétique , Endonucleases/métabolisme , Régulation de l'expression des gènes végétaux , Protéines nucléaires/génétique , Nucleotidases/génétique , Nucleotidases/métabolisme
12.
Proc Natl Acad Sci U S A ; 114(14): E2965-E2974, 2017 04 04.
Article de Anglais | MEDLINE | ID: mdl-28325872

RÉSUMÉ

As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines Argonaute/métabolisme , Réparation de l'ADN/physiologie , Protéines de liaison à l'ADN/métabolisme , ARN des plantes/métabolisme , Arabidopsis/effets des radiations , Protéines d'Arabidopsis/génétique , Protéines Argonaute/génétique , Chromatine/métabolisme , Protéines de liaison à l'ADN/génétique , Régulation de l'expression des gènes végétaux , Génome végétal , Mutation , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/effets des radiations , Végétaux génétiquement modifiés , Dimères de pyrimidine/génétique , Dimères de pyrimidine/métabolisme , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Ribonuclease III/génétique , Ribonuclease III/métabolisme , Rayons ultraviolets
13.
Nucleic Acids Res ; 45(6): 3460-3472, 2017 04 07.
Article de Anglais | MEDLINE | ID: mdl-27899576

RÉSUMÉ

In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19-26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.


Sujet(s)
Arabidopsis/génétique , Noyau de la cellule/métabolisme , ARN de transfert/métabolisme , ARN non traduit/métabolisme , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines Argonaute/métabolisme , Noyau de la cellule/génétique , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Racines de plante/génétique , Racines de plante/métabolisme , Plastes/métabolisme , ARN/métabolisme , ARN des chloroplastes/métabolisme , ARN mitochondrial , ARN de transfert/composition chimique , ARN non traduit/composition chimique , Stress physiologique
14.
Plant Signal Behav ; 11(12): e1253648, 2016 12.
Article de Anglais | MEDLINE | ID: mdl-27813706

RÉSUMÉ

As obligate photosynthetic organisms plants are particularly exposed to the damaging effects of excess light and ultraviolet wavelengths, which can impact genome and epigenome dynamics by inducing DNA sequence and chromatin alterations. DNA DAMAGE-BINDING PROTEIN 2 (DDB2) is the main factor involved in the recognition of UV-induced DNA lesions during Global Genome Repair (GGR) in mammals and in plants. 1 In a recent study we reported that, in Arabidopsis, loss of DDB2 function alters DNA methylation patterns at many repeat loci and protein coding genes. We demonstrated that DDB2 acts in a complex with ARGONAUTE 4 (AGO4) to control de novo DNA methylation via the modulation of the local abundance of 24-nt small interfering RNAs (siRNAs). In addition, we found that DDB2 negatively regulates the expression of REPRESSOR OF SILENCING 1 (ROS1), a primary factor required for active DNA demethylation. Here we report that depletions of cognate GGR factors also lead to alterations of DNA methylation profiles at particular loci. Taken together, these findings reveal an interplay between GGR factors and DNA methylation patterns.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Méthylation de l'ADN/génétique , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Réparation de l'ADN/génétique , Réparation de l'ADN/physiologie , Génome végétal/génétique , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Petit ARN interférent/génétique
15.
Plant Cell ; 28(9): 2043-2059, 2016 Sep.
Article de Anglais | MEDLINE | ID: mdl-27531226

RÉSUMÉ

In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress.

16.
Plant Cell ; 24(4): 1437-47, 2012 Apr.
Article de Anglais | MEDLINE | ID: mdl-22534127

RÉSUMÉ

Homologous recombination (HR) is essential for maintaining genome integrity and variability. To orchestrate HR in the context of chromatin is a challenge, both in terms of DNA accessibility and restoration of chromatin organization after DNA repair. Histone chaperones function in nucleosome assembly/disassembly and could play a role in HR. Here, we show that the NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) family histone chaperones are required for somatic HR in Arabidopsis thaliana. Depletion of either the NAP1 group or NAP1-RELATED PROTEIN (NRP) group proteins caused a reduction in HR in plants under normal growth conditions as well as under a wide range of genotoxic or abiotic stresses. This contrasts with the hyperrecombinogenic phenotype caused by the depletion of the CHROMATIN ASSEMBLY FACTOR-1 (CAF-1) histone chaperone. Furthermore, we show that the hyperrecombinogenic phenotype caused by CAF-1 depletion relies on NRP1 and NRP2, but the telomere shortening phenotype does not. Our analysis of DNA lesions, H3K56 acetylation, and expression of DNA repair genes argues for a role of NAP1 family histone chaperones in nucleosome disassembly/reassembly during HR. Our study highlights distinct functions for different families of histone chaperones in the maintenance of genome stability and establishes a crucial function for NAP1 family histone chaperones in somatic HR.


Sujet(s)
Adenosine triphosphatases/génétique , Protéines d'Arabidopsis/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Chaperons d'histones/métabolisme , Recombinaison homologue/génétique , Protéines d'Arabidopsis/métabolisme , Altération de l'ADN , Réparation de l'ADN/génétique , Régulation de l'expression des gènes végétaux , Gènes rapporteurs/génétique , Chaperons moléculaires/métabolisme , Mutation/génétique , Phénotype , Stress physiologique/génétique , Homéostasie des télomères/génétique
17.
EMBO J ; 30(6): 1162-72, 2011 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-21304489

RÉSUMÉ

Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/effets des radiations , Cullines/métabolisme , Réparation de l'ADN , Protéines de liaison à l'ADN/métabolisme , Génome végétal/effets des radiations , Protéines nucléaires/métabolisme , Stress physiologique , Arabidopsis/physiologie , Protéines et peptides de signalisation intracellulaire , Modèles biologiques
18.
Proc Natl Acad Sci U S A ; 108(8): 3430-5, 2011 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-21282611

RÉSUMÉ

Flowering at the right time is crucial to ensure successful plant reproduction and seed yield and is dependent on both environmental and endogenous parameters. Among the different pathways that impinge on flowering, the autonomous pathway promotes floral transition independently of day length through the repression of the central flowering repressor flowering locus C (FLC). FLC blocks floral transition by repressing flowering time integrators such as flowering locus T (FT). MSI4/FVE is a key regulator of the autonomous pathway that reduces FLC expression. Here we report that the MSI4 protein is a DDB1 and CUL4-associated factor that represses FLC expression through its association with a CLF-Polycomb Repressive Complex 2 (PRC2) in Arabidopsis. Thus, the lack of MSI4 or decreased CUL4 activity reduces H3K27 trimethylation on FLC, but also on its downstream target FT, resulting in increased expression of both genes. Moreover, CUL4 interacts with FLC chromatin in an MSI4-dependant manner, and the interaction between MSI4 and CUL4-DDB1 is necessary for the epigenetic repression of FLC. Overall our work provides evidence for a unique functional interaction between the cullin-RING ubiquitin ligase (CUL4-DDB1(MSI4)) and a CLF-PRC2 complex in the regulation of flowering timing in Arabidopsis.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines de transport/métabolisme , Cullines/métabolisme , Protéines de liaison à l'ADN/métabolisme , Épigénomique , Fleurs/génétique , Arabidopsis/physiologie , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/physiologie , Protéines de transport/physiologie , Cullines/physiologie , Protéines de liaison à l'ADN/physiologie , Régulation de l'expression des gènes végétaux , Histone/métabolisme , Protéines à domaine MADS/génétique , Méthylation , Facteurs de transcription
19.
EMBO J ; 30(4): 731-43, 2011 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-21240189

RÉSUMÉ

Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.


Sujet(s)
Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Cullines/métabolisme , Protéines de liaison à l'ADN/métabolisme , Empreinte génomique/physiologie , Séquence d'acides aminés , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/physiologie , Cullines/génétique , Cullines/physiologie , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/physiologie , Régulation de l'expression des gènes végétaux , Empreinte génomique/génétique , Données de séquences moléculaires , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/physiologie , Végétaux génétiquement modifiés , Liaison aux protéines/physiologie , Protéines de répression/génétique , Protéines de répression/métabolisme , Protéines de répression/physiologie , Similitude de séquences d'acides aminés , Ubiquitination/physiologie
20.
Plant J ; 63(3): 392-404, 2010 Aug.
Article de Anglais | MEDLINE | ID: mdl-20487384

RÉSUMÉ

Obligate photoautotrophs such as plants must capture energy from sunlight and are therefore exposed to the damaging collateral effects of ultraviolet (UV) irradiation, especially on DNA. Here we investigated the interconnection between light signaling and DNA repair, two concomitant pathways during photomorphogenesis, the developmental transition associated with the first light exposure. It is shown that combination of an enhanced sunscreen effect and photoreactivation confers a greater level of tolerance to damaging UV-C doses in the constitutive photomorphogenic de-etiolated1-1 (det1--1) Arabidopsis mutant. In darkness, expression of the PHR1 and UVR3 photolyase genes, responsible for photoreactivation, is maintained at a basal level through the positive action of HY5 and HYH photomorphogenesis-promoting transcription factors and the repressive effects of DET1 and COP1. Upon light exposure, HY5 and HYH activate PHR1 gene expression while the constitutively expressed nuclear-localized DET1 protein exerts a strong inhibitory effect. Altogether, the data presented indicate a dual role for DET1 in controlling expression of light-responsive and DNA repair genes, and describe more precisely the contribution of photomorphogenic regulators in the control of light-dependent DNA repair.


Sujet(s)
Protéines d'Arabidopsis/génétique , Arabidopsis/génétique , Carbon-carbon lyases/génétique , Gènes de plante , Facteurs de transcription/génétique , Rayons ultraviolets , Arabidopsis/enzymologie , Arabidopsis/métabolisme , Altération de l'ADN , Réparation de l'ADN , Transduction du signal
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE