Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Proc Natl Acad Sci U S A ; 116(47): 23850-23858, 2019 11 19.
Article de Anglais | MEDLINE | ID: mdl-31685622

RÉSUMÉ

Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, zmm28, under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of zmm28 transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth. Overall, these positive attributes are associated with a significant increase in grain yield relative to wild-type controls that is consistent across years, environments, and elite germplasm backgrounds.


Sujet(s)
Produits agricoles/génétique , Grains comestibles , Gènes de plante , Zea mays/génétique , Séquence d'acides aminés , Produits agricoles/enzymologie , Glutamate-ammonia ligase/métabolisme , Nitrate reductase/métabolisme , Azote/métabolisme , Photosynthèse/génétique , Feuilles de plante/physiologie , Protéines végétales/composition chimique , Protéines végétales/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés , Liaison aux protéines , Transcriptome , Zea mays/enzymologie
2.
Plant Biotechnol J ; 17(12): 2272-2285, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31033139

RÉSUMÉ

Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC-domain transcription factor that we named nac7. Transgenic maize lines where nac7 was down-regulated by RNAi showed delayed senescence and increased both biomass and nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative regulator of the stay-green trait. More importantly, crosses between nac7 RNAi parents and two different elite inbred testers produced hybrids with prolonged stay-green and increased grain yield by an average 0.29 megagram/hectare (4.6 bushel/acre), in 2 years of multi-environment field trials. Subsequent RNAseq experiments, one employing nac7 RNAi leaves and the other using leaf protoplasts overexpressing Nac7, revealed an important role for NAC7 in regulating genes in photosynthesis, chlorophyll degradation and protein turnover pathways that each contribute to the functional stay-green phenotype. We further determined the putative target of NAC7 and provided a logical extension for the role of NAC7 in regulating resource allocation from vegetative source to reproductive sink tissues. Collectively, our findings make a compelling case for NAC7 as a target for improving functional stay-green and yields in maize and other crops.


Sujet(s)
Photosynthèse , Locus de caractère quantitatif , Facteurs de transcription/génétique , Zea mays/génétique , Biomasse , Grains comestibles/génétique , Grains comestibles/croissance et développement , Azote , Feuilles de plante , Protéines végétales/génétique , Végétaux génétiquement modifiés , Zea mays/croissance et développement
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...