Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
1.
mBio ; 12(5): e0234521, 2021 10 26.
Article de Anglais | MEDLINE | ID: mdl-34607457

RÉSUMÉ

During fermentation, Saccharomyces cerevisiae metabolizes sugars and other nutrients to obtain energy for growth and survival, while also modulating these activities in response to cell-environment interactions. Here, differences in S. cerevisiae gene expression were explored over a time course of fermentation and used to differentiate fermentations, using Pinot noir grapes from 15 unique sites. Data analysis was complicated by the fact that the fermentations proceeded at different rates, making a direct comparison of time series gene expression data difficult with conventional differential expression tools. This led to the development of a novel approach combining diffusion mapping with continuous differential expression analysis (termed DMap-DE). Using this method, site-specific deviations in gene expression were identified, including changes in gene expression correlated with the non-Saccharomyces yeast Hanseniaspora uvarum, as well as initial nitrogen concentrations in grape musts. These results highlight novel relationships between site-specific variables and Saccharomyces cerevisiae gene expression that are linked to repeated fermentation outcomes. It was also demonstrated that DMap-DE can extract biologically relevant gene expression patterns from other contexts (e.g., hypoxic response of Saccharomyces cerevisiae) and offers advantages over other data dimensionality reduction approaches, indicating that DMap-DE offers a robust method for investigating asynchronous time series gene expression data. IMPORTANCE In this work, Saccharomyces cerevisiae gene expression was used as a biosensor to capture differences across and between fermentations of Pinot noir grapes from 15 unique sites representing eight American Viticultural Areas. This required development of a novel analysis method, DMap-DE, for investigation of asynchronous gene expression data. It was demonstrated that DMap-DE reveals biologically relevant shifts in gene expression related to cell-environment interactions in the context of hypoxia and fermentation. Using these data, it was discovered that gene expression by non-Saccharomyces yeasts and initial nitrogen content in grape musts are correlated with differences in gene expression among fermentations. These findings highlight important relationships between site-specific variables and gene expression that may be used to understand why foods and beverages, including wine, possess sensory characteristics associated with or derived from their place of origin.


Sujet(s)
Biologie informatique/méthodes , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Fermentation , Régulation de l'expression des gènes fongiques , Hanseniaspora/génétique , Hanseniaspora/croissance et développement , Hanseniaspora/métabolisme , RNA-Seq , Saccharomyces cerevisiae/croissance et développement , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Vitis/microbiologie
2.
Nat Commun ; 12(1): 2939, 2021 05 19.
Article de Anglais | MEDLINE | ID: mdl-34011960

RÉSUMÉ

Elucidation of non-canonical protein functions can identify novel tissue homeostasis pathways. Herein, we describe a role for the Bcl-2 family member BAD in postnatal mammary gland morphogenesis. In Bad3SA knock-in mice, where BAD cannot undergo phosphorylation at 3 key serine residues, pubertal gland development is delayed due to aberrant tubulogenesis of the ductal epithelium. Proteomic and RPPA analyses identify that BAD regulates focal adhesions and the mRNA translation repressor, 4E-BP1. These results suggest that BAD modulates localized translation that drives focal adhesion maturation and cell motility. Consistent with this, cells within Bad3SA organoids contain unstable protrusions with decreased compartmentalized mRNA translation and focal adhesions, and exhibit reduced cell migration and tubulogenesis. Critically, protrusion stability is rescued by 4E-BP1 depletion. Together our results confirm an unexpected role of BAD in controlling localized translation and cell migration during mammary gland development.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Protéines du cycle cellulaire/métabolisme , Glandes mammaires animales/croissance et développement , Glandes mammaires animales/métabolisme , Glandes mammaires humaines/croissance et développement , Glandes mammaires humaines/métabolisme , Protéine Bad/métabolisme , Substitution d'acide aminé , Animaux , Lignée cellulaire , Mouvement cellulaire/génétique , Femelle , Techniques de knock-in de gènes , Humains , Souris , Souris de lignée C57BL , Souris knockout , Modèles animaux , Morphogenèse , Protéines mutantes/composition chimique , Protéines mutantes/génétique , Protéines mutantes/métabolisme , Organoïdes/croissance et développement , Organoïdes/métabolisme , Phosphorylation , Biosynthèse des protéines , ARN messager/génétique , ARN messager/métabolisme , Sérine/composition chimique , Protéine Bad/déficit , Protéine Bad/génétique
3.
mSystems ; 6(2)2021 Apr 13.
Article de Anglais | MEDLINE | ID: mdl-33850038

RÉSUMÉ

Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics.IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.

4.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article de Anglais | MEDLINE | ID: mdl-33741633

RÉSUMÉ

Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns previously revealed genes that underlie cellular adaptation to the grape must and wine environments, involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage, similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions.IMPORTANCE This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain undercharacterized, indicating the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.


Sujet(s)
Expression des gènes , Gènes fongiques , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Vin/microbiologie , Fermentation , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme
5.
Nucleic Acids Res ; 48(20): 11675-11694, 2020 11 18.
Article de Anglais | MEDLINE | ID: mdl-33137177

RÉSUMÉ

RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.


Sujet(s)
Noyau de la cellule/métabolisme , Transporteurs nucléocytoplasmiques/métabolisme , Maturation post-transcriptionnelle des ARN , ARN ribosomique/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Noyau de la cellule/génétique , Exosome multienzyme ribonuclease complex/génétique , Facteurs d'échange de nucléotides guanyliques/génétique , Homéostasie , Mutation , Protéines nucléaires/génétique , Polyadénylation , Précurseurs des ARN/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Transcriptome
7.
Sci Rep ; 10(1): 355, 2020 01 15.
Article de Anglais | MEDLINE | ID: mdl-31942016

RÉSUMÉ

Breast cancer patients are commonly treated with taxane (e.g. docetaxel) chemotherapy, despite poor outcomes and eventual disease relapse. We previously identified the Bcl-2-associated death promoter (BAD) as a prognostic indicator of good outcome in taxane-treated breast cancer patients. We also demonstrated that BAD expression in human breast carcinoma cells generated larger tumors in mouse xenograft models. These paradoxical results suggest that BAD-expressing tumors are differentially sensitive to taxane treatment. We validated this here and show that docetaxel therapy preferentially reduced growth of BAD-expressing xenograft tumors. We next explored the cellular mechanism whereby BAD sensitizes cells to docetaxel. Taxanes are microtubule inhibiting agents that cause cell cycle arrest in mitosis whereupon the cells either die in mitosis or aberrantly exit (mitotic slippage) and survive as polyploid cells. In response to docetaxel, BAD-expressing cells had lengthened mitotic arrest with a higher proportion of cells undergoing death in mitosis with decreased mitotic slippage. Death in mitosis was non-apoptotic and not dependent on Bcl-XL interaction or caspase activation. Instead, cell death was necroptotic, and dependent on ROS. These results suggest that BAD is prognostic for favourable outcome in response to taxane chemotherapy by enhancing necroptotic cell death and inhibiting the production of potentially chemoresistant polyploid cells.


Sujet(s)
Antinéoplasiques/usage thérapeutique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Docetaxel/usage thérapeutique , Gènes bcl-2 , Protéine Bad/génétique , Animaux , Tumeurs du sein/diagnostic , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Humains , Souris , Mitose/effets des médicaments et des substances chimiques , Nécroptose/effets des médicaments et des substances chimiques , Phosphorylation oxydative , Pronostic , Régions promotrices (génétique) , Espèces réactives de l'oxygène/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe
8.
Elife ; 82019 08 27.
Article de Anglais | MEDLINE | ID: mdl-31453808

RÉSUMÉ

Dbp5 is an essential DEAD-box protein that mediates nuclear mRNP export. Dbp5 also shuttles between nuclear and cytoplasmic compartments with reported roles in transcription, ribosomal subunit export, and translation; however, the mechanism(s) by which nucleocytoplasmic transport occurs and how Dbp5 specifically contributes to each of these processes remains unclear. Towards understanding the functions and transport of Dbp5 in Saccharomyces cerevisiae, alanine scanning mutagenesis was used to generate point mutants at all possible residues within a GFP-Dbp5 reporter. Characterization of the 456 viable mutants led to the identification of an N-terminal Xpo1-dependent nuclear export signal in Dbp5, in addition to other separation-of-function alleles, which together provide evidence that Dbp5 nuclear shuttling is not essential for mRNP export. Rather, disruptions in Dbp5 nucleocytoplasmic transport result in tRNA export defects, including changes in tRNA shuttling dynamics during recovery from nutrient stress.


Sujet(s)
Transport biologique , DEAD-box RNA helicases/métabolisme , Transporteurs nucléocytoplasmiques/métabolisme , ARN de transfert/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , DEAD-box RNA helicases/génétique , Analyse de mutations d'ADN , Mutagenèse dirigée , Protéines mutantes/génétique , Protéines mutantes/métabolisme , Transporteurs nucléocytoplasmiques/génétique , Mutation ponctuelle , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique
9.
Oncogene ; 38(18): 3325-3339, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-30635657

RÉSUMÉ

The Bcl-2-associated death promoter BAD is a prognostic indicator for good clinical outcome of breast cancer patients; however, whether BAD affects breast cancer biology is unknown. Here we showed that BAD increased cell growth in breast cancer cells through two distinct mechanisms. Phosphorylation of BAD at S118 increased S99 phosphorylation, 14-3-3 binding and AKT activation to promote growth and survival. Through a second, more prominent pathway, BAD stimulated mitochondrial oxygen consumption in a novel manner that was downstream of substrate entry into the mitochondria. BAD stimulated complex I activity that facilitated enhanced cell growth and sensitized cells to apoptosis in response to complex I blockade. We propose that this dependence on oxidative metabolism generated large but nonaggressive cancers. This model identifies a non-canonical role for BAD and reconciles BAD-mediated tumor growth with favorable outcomes in BAD-high breast cancer patients.


Sujet(s)
Protéines 14-3-3/métabolisme , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Prolifération cellulaire/physiologie , Mitochondries/métabolisme , Protéine Bad/métabolisme , Animaux , Apoptose/physiologie , Lignée cellulaire tumorale , Femelle , Humains , Souris , Mitochondries/anatomopathologie , Consommation d'oxygène/physiologie , Phosphorylation/physiologie , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-bcl-2/métabolisme , Transduction du signal/physiologie
10.
J Mol Biol ; 430(14): 2080-2095, 2018 07 06.
Article de Anglais | MEDLINE | ID: mdl-29782832

RÉSUMÉ

Dbp5, DDX19 in humans, is an essential DEAD-box protein involved in mRNA export, which has also been linked to other cellular processes, including rRNA export and translation. Dbp5 ATPase activity is regulated by several factors, including RNA, the nucleoporin proteins Nup159 and Gle1, and the endogenous small-molecule inositol hexakisphosphate (InsP6). To better understand how these factors modulate Dbp5 activity and how this modulation relates to in vivo RNA metabolism, a detailed characterization of the Dbp5 mechanochemical cycle in the presence of those regulators individually or together is necessary. In this study, we test the hypothesis that Nup159 controls the ADP-bound state of Dbp5. In addition, the contributions of Mg2+ to the kinetics and thermodynamics of ADP binding to Dbp5 were assessed. Using a solution based in vitro approach, Mg2+ was found to slow ADP and ATP release from Dbp5 and increased the overall ADP and ATP affinities, as observed with other NTPases. Furthermore, Nup159 did not accelerate ADP release, while Gle1 actually slowed ADP release independent of Mg2+. These findings are not consistent with Nup159 acting as a nucleotide exchange factor to promote ADP release and Dbp5 ATPase cycling. Instead, in the presence of Nup159, the interaction between Gle1 and ADP-bound Dbp5 was found to be reduced by ~18-fold, suggesting that Nup159 alters the Dbp5-Gle1 interaction to aid Gle1 release from Dbp5.


Sujet(s)
ADP/métabolisme , DEAD-box RNA helicases/métabolisme , Complexe protéique du pore nucléaire/métabolisme , Transporteurs nucléocytoplasmiques/métabolisme , ADP/analogues et dérivés , Adénosine triphosphate/analogues et dérivés , Adénosine triphosphate/métabolisme , Humains , Magnésium/métabolisme , Liaison aux protéines , ARN/métabolisme , ortho-Aminobenzoates/métabolisme
11.
Development ; 141(19): 3772-81, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25209250

RÉSUMÉ

Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.


Sujet(s)
Plan d'organisation du corps/physiologie , Endoderme/physiologie , Tube digestif/embryologie , Régulation de l'expression des gènes au cours du développement/physiologie , Réseaux de régulation génique/physiologie , Glycoprotéines/métabolisme , Transduction du signal/physiologie , Activines/métabolisme , Aldehyde oxidoreductases/métabolisme , Animaux , Test de retard de migration électrophorétique , Réseaux de régulation génique/génétique , Vecteurs génétiques/génétique , Protéines HMGB/métabolisme , Protéines et peptides de signalisation intercellulaire , Luciferases , Souris , Souris knockout , Réaction de polymérisation en chaine en temps réel , Récepteurs à l'acide rétinoïque/métabolisme , Facteurs de transcription SOX-F/métabolisme
12.
J Neurosci ; 32(20): 6931-6, 2012 May 16.
Article de Anglais | MEDLINE | ID: mdl-22593061

RÉSUMÉ

Rab3A is a synaptic vesicle-associated protein found throughout the nervous system, but its precise function is unknown. Genetic knock-out studies show that Rab3A is not necessary for vesicular release or replenishment at conventional synapses in the brain. Here we explore the function of Rab3A at ribbon synapses in the retina of the tiger salamander (Ambystoma tigrinum). Fluorescently labeled Rab3A, delivered into rods and cones through a patch pipette, binds to and dissociates from synaptic ribbons. Experiments using nonphosphorylatable GDP analogs and a GTPase-deficient Rab3A mutant indicate that ribbon binding and dissociation are governed by a GTP hydrolysis cycle. Paired recordings from presynaptic photoreceptors and postsynaptic OFF-bipolar cells show that the Rab3A mutant blocks synaptic release in an activity-dependent manner, with more frequent stimulation leading to more rapid block. The frequency dependence of block by exogenous Rab3A suggests that it acts competitively with synaptic vesicles to interfere with their resupply to release sites. Together, these findings suggest a crucial role of Rab3A in delivering vesicles to Ca²âº-dependent release sites at ribbon synapses.


Sujet(s)
Cellules photoréceptrices de vertébré/physiologie , Synapses/métabolisme , Vésicules synaptiques/métabolisme , Protéine G rab3A/métabolisme , Ambystoma , Animaux , Femelle , dGTPases/génétique , Mâle , Mutation , Cellules photoréceptrices de vertébré/effets des médicaments et des substances chimiques , Cellules photoréceptrices de vertébré/métabolisme , Rétine/effets des médicaments et des substances chimiques , Rétine/métabolisme , Cellules bipolaires rétiniennes/physiologie , Protéine G rab3A/génétique , Protéine G rab3A/pharmacologie
13.
J Neurophysiol ; 106(1): 488-96, 2011 Jul.
Article de Anglais | MEDLINE | ID: mdl-21525363

RÉSUMÉ

Currently available optogenetic tools, including microbial light-activated ion channels and transporters, are transforming systems neuroscience by enabling precise remote control of neuronal firing, but they tell us little about the role of indigenous ion channels in controlling neuronal function. Here, we employ a chemical-genetic strategy to engineer light sensitivity into several mammalian K(+) channels that have different gating and modulation properties. These channels provide the means for photoregulating diverse electrophysiological functions. Photosensitivity is conferred on a channel by a tethered ligand photoswitch that contains a cysteine-reactive maleimide (M), a photoisomerizable azobenzene (A), and a quaternary ammonium (Q), a K(+) channel pore blocker. Using mutagenesis, we identify the optimal extracellular cysteine attachment site where MAQ conjugation results in pore blockade when the azobenzene moiety is in the trans but not cis configuration. With this strategy, we have conferred photosensitivity on channels containing Kv1.3 subunits (which control axonal action potential repolarization), Kv3.1 subunits (which contribute to rapid-firing properties of brain neurons), Kv7.2 subunits (which underlie "M-current"), and SK2 subunits (which are Ca(2+)-activated K(+) channels that contribute to synaptic responses). These light-regulated channels may be overexpressed in genetically targeted neurons or substituted for native channels with gene knockin technology to enable precise optopharmacological manipulation of channel function.


Sujet(s)
Canal potassique KCNQ2/composition chimique , Canal potassique Kv1.3/composition chimique , Neurones/composition chimique , Processus photochimiques , Canaux potassiques calcium-dépendants/composition chimique , Ingénierie des protéines , Séquence d'acides aminés , Composés azoïques/composition chimique , Cellules HEK293 , Humains , Ouverture et fermeture des portes des canaux ioniques , Canal potassique KCNQ2/génétique , Canal potassique Kv1.3/génétique , Maléimides/composition chimique , Données de séquences moléculaires , Composés d'ammonium quaternaire/composition chimique
14.
Dev Biol ; 300(2): 523-33, 2006 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-17027958

RÉSUMÉ

Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left-right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi-/- embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions.


Sujet(s)
Protéines adaptatrices de la transduction du signal/physiologie , Cils vibratiles/physiologie , Protéines Hedgehog/physiologie , Transduction du signal/physiologie , Protéines adaptatrices de la transduction du signal/déficit , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Plan d'organisation du corps/génétique , Système nerveux central/embryologie , Femelle , Mâle , Souris , Souris de lignée C57BL , Souris knockout
15.
Circ Res ; 94(7): 910-7, 2004 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-14988227

RÉSUMÉ

Various studies have identified a critical role for Notch signaling in cardiovascular development. In this and other systems, Notch receptors and ligands are expressed in regions that undergo epithelial-to-mesenchymal transformation. However, there is no direct evidence that Notch activation can induce mesenchymal transdifferentiation. In this study we show that Notch activation in endothelial cells results in morphological, phenotypic, and functional changes consistent with mesenchymal transformation. These changes include downregulation of endothelial markers (vascular endothelial [VE]-cadherin, Tie1, Tie2, platelet-endothelial cell adhesion molecule-1, and endothelial NO synthase), upregulation of mesenchymal markers (alpha-smooth muscle actin, fibronectin, and platelet-derived growth factor receptors), and migration toward platelet-derived growth factor-BB. Notch-induced endothelial-to-mesenchymal transformation does not seem to require external regulation and is restricted to cells expressing activated Notch. Jagged1 stimulation of endothelial cells induces a similar mesenchymal transformation, and Jagged1, Notch1, and Notch4 are expressed in the ventricular outflow tract during stages of endocardial cushion formation. This is the first evidence that Jagged1-Notch interactions induce endothelial-to-mesenchymal transformation, and our findings suggest that Notch signaling may be required for proper endocardial cushion differentiation and/or vascular smooth muscle cell development.


Sujet(s)
Endothélium vasculaire/métabolisme , Coeur foetal/métabolisme , Septum du coeur/embryologie , Mésoderme/cytologie , Muscles lisses vasculaires/cytologie , Protéines/physiologie , Protéines proto-oncogènes/physiologie , Récepteurs de surface cellulaire/physiologie , Facteurs de transcription , Actines/biosynthèse , Actines/génétique , Animaux , Antigènes CD , Bécaplermine , Cadhérines/métabolisme , Protéines de liaison au calcium , Différenciation cellulaire , Lignée cellulaire , Endocarde/cytologie , Endothélium vasculaire/cytologie , Coeur foetal/ultrastructure , Régulation de l'expression des gènes au cours du développement , Humains , Protéines et peptides de signalisation intercellulaire , Protéine jagged-1 , Protéines membranaires , Souris , Phénotype , Antigènes CD31/métabolisme , Facteur de croissance dérivé des plaquettes/pharmacologie , Biosynthèse des protéines , Protéines/génétique , Protéines proto-oncogènes/biosynthèse , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes c-sis , Récepteur Notch1 , Récepteur Notch4 , Récepteurs de surface cellulaire/biosynthèse , Récepteurs de surface cellulaire/génétique , Récepteurs Notch , Protéines de fusion recombinantes/physiologie , Protéines serrate-jagged , Ovis , Transduction du signal/physiologie , Transduction génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...