Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Clin Invest ; 131(6)2021 03 15.
Article de Anglais | MEDLINE | ID: mdl-33497358

RÉSUMÉ

Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.


Sujet(s)
Incapacités de développement/génétique , Pseudo-obstruction intestinale/génétique , Mutation , Neuréguline-1/génétique , Récepteur ErbB-2/génétique , Récepteur ErbB-3/génétique , Adolescent , Animaux , Enfant d'âge préscolaire , Incapacités de développement/anatomopathologie , Modèles animaux de maladie humaine , Femelle , Motilité gastrointestinale/génétique , Maladie de Hirschsprung/génétique , Maladie de Hirschsprung/anatomopathologie , Humains , Nouveau-né , Pseudo-obstruction intestinale/anatomopathologie , Mâle , Souris , Modèles moléculaires , Pedigree , Phénotype , Grossesse , Récepteur ErbB-2/composition chimique , Récepteur ErbB-3/composition chimique , Récepteur ErbB-3/déficit
2.
Nat Neurosci ; 24(1): 34-46, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33288908

RÉSUMÉ

Autonomous regulation of the intestine requires the combined activity of functionally distinct neurons of the enteric nervous system (ENS). However, the variety of enteric neuron types and how they emerge during development remain largely unknown. Here, we define a molecular taxonomy of 12 enteric neuron classes within the myenteric plexus of the mouse small intestine using single-cell RNA sequencing. We present cell-cell communication features and histochemical markers for motor neurons, sensory neurons and interneurons, together with transgenic tools for class-specific targeting. Transcriptome analysis of the embryonic ENS uncovers a novel principle of neuronal diversification, where two neuron classes arise through a binary neurogenic branching and all other identities emerge through subsequent postmitotic differentiation. We identify generic and class-specific transcriptional regulators and functionally connect Pbx3 to a postmitotic fate transition. Our results offer a conceptual and molecular resource for dissecting ENS circuits and predicting key regulators for directed differentiation of distinct enteric neuron classes.


Sujet(s)
Plexus myentérique/composition chimique , Neurones/composition chimique , ARN/composition chimique , ARN/génétique , Analyse sur cellule unique , Animaux , Communication cellulaire , Système nerveux entérique/physiologie , Protéines à homéodomaine/génétique , Interneurones/physiologie , Souris , Souris de lignée C57BL , Motoneurones/physiologie , Plexus myentérique/cytologie , Neurones/classification , Neurones/ultrastructure , Protéines proto-oncogènes/génétique , Cellules réceptrices sensorielles/physiologie , Analyse de séquence d'ARN , Transcriptome
3.
Elife ; 72018 12 17.
Article de Anglais | MEDLINE | ID: mdl-30540251

RÉSUMÉ

Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson's disease-linked protein DJ-1ß as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.


Sujet(s)
Drosophila melanogaster/métabolisme , Motoneurones/métabolisme , Plasticité neuronale , Espèces réactives de l'oxygène/métabolisme , Animaux , Animal génétiquement modifié , Protéines de Drosophila/métabolisme , Drosophila melanogaster/génétique , Larve/génétique , Larve/métabolisme , Microscopie électronique à transmission , Protéines de tissu nerveux/métabolisme , Jonction neuromusculaire/métabolisme , Jonction neuromusculaire/ultrastructure , Phosphohydrolase PTEN/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Terminaisons présynaptiques/métabolisme , Terminaisons présynaptiques/ultrastructure , Protein deglycase DJ-1 , Transduction du signal , Transmission synaptique
4.
Gastroenterology ; 154(3): 624-636, 2018 02.
Article de Anglais | MEDLINE | ID: mdl-29031500

RÉSUMÉ

BACKGROUND & AIMS: The enteric nervous system (ENS) regulates gastrointestinal function via different subtypes of neurons, organized into fine-tuned neural circuits. It is not clear how cell diversity is created within the embryonic ENS; information required for development of cell-based therapies and models of enteric neuropathies. We aimed to identify proteins that regulate ENS differentiation and network formation. METHODS: We generated and compared RNA expression profiles of the entire ENS, ENS progenitor cells, and non-ENS gut cells of mice, collected at embryonic days 11.5 and 15.5, when different subtypes of neurons are formed. Gastrointestinal tissues from R26ReYFP reporter mice crossed to Sox10-CreERT2 or Wnt1-Cre mice were dissected and the 6 populations of cells were isolated by flow cytometry. We used histochemistry to map differentially expressed proteins in mouse and human gut tissues at different stages of development, in different regions. We examined enteric neuronal diversity and gastric function in Wnt1-Cre x Sox6fl/fl mice, which do not express the Sox6 gene in the ENS. RESULTS: We identified 147 transcription and signaling factors that varied in spatial and temporal expression during development of the mouse ENS. Of the factors also analyzed in human ENS, most were conserved. We uncovered 16 signaling pathways (such as fibroblast growth factor and Eph/ephrin pathways). Transcription factors were grouped according to their specific expression in enteric progenitor cells (such as MEF2C), enteric neurons (such as SOX4), or neuron subpopulations (such as SATB1 and SOX6). Lack of SOX6 in the ENS reduced the numbers of gastric dopamine neurons and delayed gastric emptying. CONCLUSIONS: Using transcriptome and histochemical analyses of the developing mouse and human ENS, we mapped expression patterns of transcription and signaling factors. Further studies of these candidate determinants might elucidate the mechanisms by which enteric stem cells differentiate into neuronal subtypes and form distinct connectivity patterns during ENS development. We found expression of SOX6 to be required for development of gastric dopamine neurons.


Sujet(s)
Neurones dopaminergiques/métabolisme , Système nerveux entérique/métabolisme , Transduction du signal , Estomac/innervation , Facteurs de transcription/métabolisme , Transcription génétique , Animaux , Communication autocrine , Système nerveux entérique/embryologie , Vidange gastrique , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement , Génotype , Âge gestationnel , Humains , Souris knockout , Communication paracrine , Phénotype , Facteurs de transcription SOX-D/génétique , Facteurs de transcription SOX-D/métabolisme , Facteurs de transcription SOX-E/génétique , Facteurs de transcription SOX-E/métabolisme , Spécificité d'espèce , Facteurs de transcription/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE