Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 179
Filtrer
1.
Blood ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38941598

RÉSUMÉ

T-prolymphocytic leukemia (T-PLL) is a mature T-cell neoplasm associated with marked chemotherapy resistance and continued poor clinical outcomes. Current treatments, i.e. the CD52-antibody alemtuzumab, offer transient responses, with relapses being almost inevitable without consolidating allogeneic transplantation. Recent more detailed concepts of T-PLL's pathobiology fostered the identification of actionable vulnerabilities: (i) altered epigenetics, (ii) defective DNA damage responses, (iii) aberrant cell-cycle regulation, and (iv) deregulated pro-survival pathways, including TCR and JAK/STAT signaling. To further develop related pre-clinical therapeutic concepts, we studied inhibitors of (H)DACs, BCL2, CDK, MDM2, and clas-sical cytostatics, utilizing (a) single-agent and combinatorial compound testing in 20 well-characterized and molecularly-profiled primary T-PLL (validated by additional 42 cases), and (b) 2 independent murine models (syngeneic transplants and patient-derived xenografts). Overall, the most efficient/selective single-agents and combinations (in vitro and in mice) in-cluded Cladribine, Romidepsin ((H)DAC), Venetoclax (BCL2), and/or Idasanutlin (MDM2). Cladribine sensitivity correlated with expression of its target RRM2. T-PLL cells revealed low overall apoptotic priming with heterogeneous dependencies on BCL2 proteins. In additional 38 T-cell leukemia/lymphoma lines, TP53 mutations were associated with resistance towards MDM2 inhibitors. P53 of T-PLL cells, predominantly in wild-type configuration, was amenable to MDM2 inhibition, which increased its MDM2-unbound fraction. This facilitated P53 activa-tion and down-stream signals (including enhanced accessibility of target-gene chromatin re-gions), in particular synergy with insults by Cladribine. Our data emphasize the therapeutic potential of pharmacologic strategies to reinstate P53-mediated apoptotic responses. The identified efficacies and their synergies provide an informative background on compound and patient selection for trial designs in T-PLL.

2.
Mol Cancer ; 23(1): 114, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38811984

RÉSUMÉ

BACKGROUND: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1ß production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1ß and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1ß, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.


Sujet(s)
Évolution de la maladie , Phosphohydrolase PTEN , Tumeurs de la prostate , Microenvironnement tumoral , Mâle , Tumeurs de la prostate/anatomopathologie , Tumeurs de la prostate/génétique , Tumeurs de la prostate/métabolisme , Animaux , Souris , Humains , Phosphohydrolase PTEN/génétique , Phosphohydrolase PTEN/métabolisme , Microenvironnement tumoral/immunologie , Phénotype sécrétoire associé à la sénescence , Protéines proto-oncogènes c-jun/métabolisme , Régulation de l'expression des gènes tumoraux , Lignée cellulaire tumorale , Analyse de profil d'expression de gènes , Vieillissement de la cellule/génétique , Modèles animaux de maladie humaine
3.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38802512

RÉSUMÉ

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Sujet(s)
Immunité innée , Interféron gamma , Récepteur lymphocytaire T antigène, gamma-delta , Récepteurs à l'interleukine-7 , Facteur de transcription STAT-5 , Thymus (glande) , Animaux , Interféron gamma/métabolisme , Interféron gamma/immunologie , Souris , Humains , Récepteur lymphocytaire T antigène, gamma-delta/métabolisme , Récepteur lymphocytaire T antigène, gamma-delta/immunologie , Thymus (glande)/immunologie , Récepteurs à l'interleukine-7/métabolisme , Facteur de transcription STAT-5/métabolisme , Transduction du signal/immunologie , Souris de lignée C57BL , Lymphocytes T CD8+/immunologie , Souris knockout , Récepteur lymphocytaire T antigène, alpha-bêta/métabolisme , Récepteur lymphocytaire T antigène, alpha-bêta/génétique , Antigènes CD8/métabolisme , Femelle , Lymphocytes intra-épithéliaux/immunologie , Lymphocytes intra-épithéliaux/métabolisme , Interleukine-7/métabolisme
4.
J Clin Invest ; 134(8)2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38618957

RÉSUMÉ

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Sujet(s)
Leucémie-lymphome lymphoblastique à précurseurs T , Animaux , Humains , Souris , Souris transgéniques , Leucémie-lymphome lymphoblastique à précurseurs T/génétique , Protein-tyrosine kinases , Récepteurs aux antigènes des cellules T/génétique , Transduction du signal , Facteur de transcription STAT-5/génétique
5.
Nat Immunol ; 25(5): 847-859, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38658806

RÉSUMÉ

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Sujet(s)
Homéostasie , Janus kinases , Macrophages , Souris knockout , Facteurs de transcription STAT , Transduction du signal , Animaux , Souris , Macrophages/immunologie , Macrophages/métabolisme , Janus kinases/métabolisme , Facteurs de transcription STAT/métabolisme , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Facteur de transcription STAT-1/métabolisme , Facteur de transcription STAT-1/génétique , Souris de lignée C57BL , Sous-unité gamma du complexe ISGF3/métabolisme , Sous-unité gamma du complexe ISGF3/génétique , TYK2 Kinase/métabolisme , TYK2 Kinase/génétique , Régulation de l'expression des gènes
6.
Blood ; 143(24): 2474-2489, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38498036

RÉSUMÉ

ABSTRACT: Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.


Sujet(s)
Cellules tueuses naturelles , Leucémie à grands lymphocytes granuleux , Facteur de transcription STAT-5 , Animaux , Facteur de transcription STAT-5/génétique , Facteur de transcription STAT-5/métabolisme , Souris , Cellules tueuses naturelles/métabolisme , Cellules tueuses naturelles/immunologie , Cellules tueuses naturelles/anatomopathologie , Humains , Leucémie à grands lymphocytes granuleux/génétique , Leucémie à grands lymphocytes granuleux/anatomopathologie , Modèles animaux de maladie humaine , Lignage cellulaire/génétique , Mutation , Souris transgéniques
9.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Article de Anglais | MEDLINE | ID: mdl-38113354

RÉSUMÉ

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Sujet(s)
Inhibiteurs de désacétylase d'histone , Histone deacetylases , Humains , Inhibiteurs de désacétylase d'histone/composition chimique , Histone deacetylases/métabolisme , Sites de fixation , Spectrométrie de masse en tandem , Ligands , Protéines de répression/métabolisme
10.
Methods Mol Biol ; 2705: 213-223, 2023.
Article de Anglais | MEDLINE | ID: mdl-37668976

RÉSUMÉ

Screening of inhibitor libraries for candidate ligands is an important step in the drug discovery process. Thermal denaturation-based screening strategies are built on the premise that a protein-ligand complex has an altered stability profile compared to the protein alone. As such, these assays provide an accessible and rapid methodology for stratifying ligands that directly engage with the protein target of interest. Here, we describe three denaturation-based strategies for examining protein-inhibitor binding, in the context of SH2 domains. This includes conventional dye-based Thermal Shift Assays (TSA), nonconventional labeled ligand-based TSA, and Cellular Thermal Shift Assays (CETSA). Conventional dye-based TSA reports on the fluorescence of an external hydrophobic dye as it interacts with heat-exposed nonpolar protein surfaces as the temperature is incrementally increased. By contrast, nonconventional-labeled ligand TSA involves a fluorescence-tagged probe (phosphopeptide for SH2 domains) that is quenched as it dissociates from the protein during the denaturation process. CETSA involves monitoring the presence of the protein via Western blotting as the temperature is increased. In all three approaches, performing the assay in the presence of a candidate ligand can alter the melting profile of the protein. These assays offer primary screening tools to examine SH2 domain inhibitors libraries with varying chemical motifs, and a subset of the advantages and limitations of each approach is also discussed.


Sujet(s)
Découverte de médicament , Domaine d'homologie SRC , Ligands , Banque de gènes , Technique de Western , Colorants fluorescents
11.
Explor Target Antitumor Ther ; 4(4): 757-779, 2023.
Article de Anglais | MEDLINE | ID: mdl-37711592

RÉSUMÉ

Histone deacetylases (HDACs) are a class of zinc (Zn)-dependent metalloenzymes that are responsible for epigenetic modifications. HDACs are largely associated with histone proteins that regulate gene expression at the DNA level. This tight regulation is controlled by acetylation [via histone acetyl transferases (HATs)] and deacetylation (via HDACs) of histone and non-histone proteins that alter the coiling state of DNA, thus impacting gene expression as a downstream effect. For the last two decades, HDACs have been studied extensively and indicated in a range of diseases where HDAC dysregulation has been strongly correlated with disease emergence and progression-most prominently, cancer, neurodegenerative diseases, HIV, and inflammatory diseases. The involvement of HDACs as regulators in these biochemical pathways established them as an attractive therapeutic target. This review summarizes the drug development efforts exerted to create HDAC inhibitors (HDACis), specifically class I HDACs, with a focus on the medicinal chemistry, structural design, and pharmacology aspects of these inhibitors.

12.
Nat Commun ; 14(1): 5709, 2023 09 19.
Article de Anglais | MEDLINE | ID: mdl-37726279

RÉSUMÉ

The BCL-2 inhibitor Venetoclax is a promising agent for the treatment of acute myeloid leukemia (AML). However, many patients are refractory to Venetoclax, and resistance develops quickly. ATP-binding cassette (ABC) transporters mediate chemotherapy resistance but their role in modulating the activity of targeted small-molecule inhibitors is unclear. Using CRISPR/Cas9 screening, we find that loss of ABCC1 strongly increases the sensitivity of AML cells to Venetoclax. Genetic and pharmacologic ABCC1 inactivation potentiates the anti-leukemic effects of BCL-2 inhibitors and efficiently re-sensitizes Venetoclax-resistant leukemia cells. Conversely, ABCC1 overexpression induces resistance to BCL-2 inhibitors by reducing intracellular drug levels, and high ABCC1 levels predicts poor response to Venetoclax therapy in patients. Consistent with ABCC1-specific export of glutathionylated substrates, inhibition of glutathione metabolism increases the potency of BCL-2 inhibitors. These results identify ABCC1 and glutathione metabolism as mechanisms limiting efficacy of BCL-2 inhibitors, which may pave the way to development of more effective therapies.


Sujet(s)
Antinéoplasiques , Leucémie aigüe myéloïde , Humains , Sulfonamides/pharmacologie , Sulfonamides/usage thérapeutique , Transporteurs ABC , Leucémie aigüe myéloïde/traitement médicamenteux , Leucémie aigüe myéloïde/génétique , Glutathion , Protéines proto-oncogènes c-bcl-2/génétique
13.
Mol Cancer ; 22(1): 133, 2023 08 12.
Article de Anglais | MEDLINE | ID: mdl-37573301

RÉSUMÉ

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Sujet(s)
Diabète de type 2 , Metformine , Tumeurs de la prostate , Animaux , Humains , Mâle , Souris , AMP-Activated Protein Kinases/métabolisme , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Metformine/pharmacologie , Récidive tumorale locale , Tumeurs de la prostate/génétique , Tumeurs de la prostate/anatomopathologie , Facteur de transcription STAT-3/génétique , Facteur de transcription STAT-3/métabolisme
14.
Haematologica ; 108(4): 993-1005, 2023 04 01.
Article de Anglais | MEDLINE | ID: mdl-35021603

RÉSUMÉ

Tyrosine kinase 2 (TYK2) is a member of the Janus kinase/signal transducer and activator of transcription pathway, which is central in cytokine signaling. Previously, germline TYK2 mutations have been described in two patients developing de novo T-cell acute lymphoblastic leukemias (T-ALL) or precursor B-ALL. The mutations (P760L and G761V) are located within the regulatory pseudokinase domain and lead to constitutive activation of TYK2. We demonstrate the transformation capacity of TYK2 P760L in hematopoietic cell systems including primary bone marrow cells. In vivo engraftment of TYK2 P760L-expressing cell lines led to development of leukemia. A kinase inhibitor screen uncovered that oncogenic TYK2 acts synergistically with the PI3K/AKT/mTOR and CDK4/6 pathways. Accordingly, the TYK2-specific inhibitor deucravacitinib (BMS986165) reduces cell viability of TYK2 P760L-transformed cell models and ex vivo cultured TYK2 P760L-mutated patient- derived xenograft cells most efficiently when combined with mTOR or CDK4/6 inhibitors. Our study thereby pioneers novel treatment options for patients suffering from TYK2-driven acute leukemia.


Sujet(s)
Leucémie-lymphome lymphoblastique à précurseurs T , TYK2 Kinase , Humains , Lignée cellulaire , Kinase-4 cycline-dépendante , Phosphatidylinositol 3-kinases , Sérine-thréonine kinases TOR , TYK2 Kinase/génétique , TYK2 Kinase/métabolisme
15.
Allergy ; 78(1): 47-59, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36207764

RÉSUMÉ

Eosinophilia and eosinophil activation are recurrent features in various reactive states and certain hematologic malignancies. In patients with hypereosinophilia (HE), HE-induced organ damage is often encountered and may lead to the diagnosis of a hypereosinophilic syndrome (HES). A number of known mechanisms and etiologies contribute to the development of HE and HES. Based on these etiologies and the origin of eosinophils, HE and HES are divided into primary forms where eosinophils are clonal cells, reactive forms where an underlying reactive or neoplastic condition is detected and eosinophils are considered to be "non-clonal" cells, and idiopathic HE and HES in which neither a clonal nor a reactive underlying pathology is detected. Since 2012, this classification and the related criteria have been widely accepted and regarded as standard. However, during the past few years, new developments in the field and an increasing number of markers and targets have created a need to update these criteria and the classification of HE and HES. To address this challenge, a Working Conference on eosinophil disorders was organized in 2021. In this conference, a panel of experts representing the relevant fields, including allergy, dermatology, hematology, immunology, laboratory medicine, and pathology, met and discussed new markers and concepts as well as refinements in definitions, criteria and classifications of HE and HES. The outcomes of this conference are presented in this article and should assist in the diagnosis and management of patients with HE and HES in daily practice and in the preparation and conduct of clinical trials.


Sujet(s)
Éosinophilie , Syndrome hyperéosinophilique , Hypersensibilité , Humains , Granulocytes éosinophiles/anatomopathologie , Éosinophilie/diagnostic , Éosinophilie/étiologie , Éosinophilie/traitement médicamenteux , Syndrome , Hypersensibilité/complications , Syndrome hyperéosinophilique/étiologie , Syndrome hyperéosinophilique/complications
16.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Article de Anglais | MEDLINE | ID: mdl-36355493

RÉSUMÉ

NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies.

17.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Article de Anglais | MEDLINE | ID: mdl-36341492

RÉSUMÉ

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Sujet(s)
Lymphome T cutané , p21-Activated Kinases , Animaux , Souris , Génomique , Hétérogreffes , Lymphome T cutané/traitement médicamenteux
18.
J Cell Mol Med ; 26(7): 2049-2062, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35229974

RÉSUMÉ

Through a comprehensive review and in silico analysis of reported data on STAT-linked diseases, we analysed the communication pathways and interactome of the seven STATs in major cancer categories and proposed rational targeting approaches for therapeutic intervention to disrupt critical pathways and addictions to hyperactive JAK/STAT in neoplastic states. Although all STATs follow a similar molecular activation pathway, STAT1, STAT2, STAT4 and STAT6 exert specific biological profiles associated with a more restricted pattern of activation by cytokines. STAT3 and STAT5A as well as STAT5B have pleiotropic roles in the body and can act as critical oncogenes that promote many processes involved in cancer development. STAT1, STAT3 and STAT5 also possess tumour suppressive action in certain mutational and cancer type context. Here, we demonstrated member-specific STAT activity in major cancer types. Through systems biology approaches, we found surprising roles for EGFR family members, sex steroid hormone receptor ESR1 interplay with oncogenic STAT function and proposed new drug targeting approaches of oncogenic STAT pathway addiction.


Sujet(s)
Tumeurs , Facteurs de transcription STAT , Cytokines/métabolisme , Récepteurs ErbB/métabolisme , Humains , Tumeurs/génétique , Facteurs de transcription STAT/génétique , Facteurs de transcription STAT/métabolisme
19.
Biochim Biophys Acta Gen Subj ; 1866(3): 130058, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-34774983

RÉSUMÉ

BACKGROUND: The STAT family of transcription factors control gene expression in response to signals from various stimulus. They display functions in diseases ranging from autoimmunity and chronic inflammatory disease to cancer and infectious disease. SCOPE OF REVIEW: This work uses an approach informed by structural data to explore how domain-specific structural variations, post-translational modifications, and the cancer genome mutational landscape dictate STAT member-specific activities. MAJOR CONCLUSIONS: We illustrated the structure-function relationship of STAT proteins and highlighted their effect on member-specific activity. We correlated disease-linked STAT mutations to the structure and cancer genome mutational landscape and proposed rational drug targeting approaches of oncogenic STAT pathway addiction. GENERAL SIGNIFICANCE: Hyper-activated STATs and their variants are associated with multiple diseases and are considered high value oncology targets. A full understanding of the molecular basis of member-specific STAT-mediated signaling and the strategies to selectively target them requires examination of the difference in their structures and sequences.


Sujet(s)
Facteurs de transcription STAT
20.
Cancers (Basel) ; 13(23)2021 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-34885151

RÉSUMÉ

We aimed to identify novel markers for aggressive prostate cancer in a STAT3-low proteomics-derived dataset of mitochondrial proteins by immunohistochemical analysis and correlation with transcriptomic data and biochemical recurrence in a STAT3 independent PCa cohort. Formalin-fixed paraffin-embedded tissue (FFPE) sample selection for proteomic analysis and tissue-microarray (TMA) generation was conducted from a cohort of PCa patients. Retrospective data analysis was performed with the same cohort. 153 proteins differentially expressed between STAT3-low and STAT3-high samples were identified. Out of these, 46 proteins were associated with mitochondrial processes including oxidative phosphorylation (OXPHOS), and 45 proteins were upregulated, including NDUFS1/ATP5O. In a STAT3 independent PCa cohort, high expression of NDUFS1/ATP5O was confirmed by immunocytochemistry (IHC) and was significantly associated with earlier biochemical recurrence (BCR). mRNA expression levels for these two genes were significantly higher in intra-epithelial neoplasia and in PCa compared to benign prostate glands. NDUFS1/ATP5O levels are increased both at the mRNA and protein level in aggressive PCa. Our results provide evidence that NDUFS1/ATP5O could be used to identify high-risk PCa patients.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...