Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 13(1): 10071, 2023 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-37344550

RÉSUMÉ

We performed a preliminary study of neutron resonance absorption imaging to investigate the spatial distribution of constituent elements in borosilicate glasses containing simulated high-level radioactive waste, in which elemental inhomogeneities affect the physical and chemical stabilities of the glass. Dips generated by the resonance absorptions of Rh, Pd, Na, Gd, Cs, and Sm were observed in the neutron transmission spectra of the glass samples. The spatial distributions of these elements were obtained from the neutron transmission images at the resonance energies. The distributions of Rh and Pd visualized the sedimentation of these platinum group elements. In contrast, the lanthanides (Gd and Sm) and Cs were uniformly dispersed. These results show that neutron resonance absorption imaging is a promising tool for characterizing borosilicate glasses and investigating the vitrification mechanism of high-level radioactive waste.

2.
Transfusion ; 41(4): 456-61, 2001 Apr.
Article de Anglais | MEDLINE | ID: mdl-11316894

RÉSUMÉ

BACKGROUND: Nonenveloped and thermostable viruses such as parvovirus B19 (B19) can be transmitted to patients who are receiving plasma-derived coagulation factor concentrates treated by the S/D method for inactivating enveloped viruses. Therefore, it is important to develop and validate new methods for the inactivation of nonenveloped viruses. STUDY DESIGN AND METHODS: Suspensions of B19 in coagulation factor concentrates (FVIII) were irradiated with UVC light. B19 infectivity was determined by an indirect immunofluorescence assay using CFU-E, as a host cell, derived from peripheral blood CD34+ cells. The effects of catechins on B19 infectivity and on FVIII activity after UVC illumination were also examined. RESULTS: The indirect immunofluorescence assay estimated the B19 infectivity of samples containing virus copies of 10(5) to 10(11) per 10 microL to be a median tissue culture-infectious dose of 10(0.3) to 10(5.4) per 10 microL. B19 was inactivated by 3 log at 750 J per m(2) of UVC radiation and was undetectable after 1000 or 2000 J per m(2) of irradiation. However, FVIII activity decreased to 55 to 60 percent of pretreatment activity after 2000 J per m(2) of UVC radiation. This was inhibited in the presence of rutin or catechins. Epigallocatechin gallate could maintain FVIII activity at almost 100 percent of pretreatment activity after 2000 J per m(2) of UVC radiation, while B19 infectivity was decreased to undetectable levels, which resulted in >3.9 log inactivation. CONCLUSION: UVC radiation in the presence of catechins, especially epigallocatechin gallate, appears to be an effective method of increasing the viral safety of FVIII concentrates without the loss of coagulation activity.


Sujet(s)
Facteurs de la coagulation sanguine/effets indésirables , Facteurs de la coagulation sanguine/effets des radiations , Infections à Parvoviridae/prévention et contrôle , Parvovirus/effets des radiations , Antigènes CD34 , Précurseurs érythroïdes/virologie , Cellules souches hématopoïétiques/virologie , Humains , Infections à Parvoviridae/transmission , Parvovirus/isolement et purification , Rayons ultraviolets
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...