Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Appl Mater Interfaces ; 16(17): 22326-22333, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38635965

RÉSUMÉ

Low-temperature large-area growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) is critical for their integration with silicon chips. Especially, if the growth temperatures can be lowered below the back-end-of-line (BEOL) processing temperatures, the Si transistors can interface with 2D devices (in the back end) to enable high-density heterogeneous circuits. Such configurations are particularly useful for neuromorphic computing applications where a dense network of neurons interacts to compute the output. In this work, we present low-temperature synthesis (400 °C) of 2D tungsten diselenide (WSe2) via the selenization of the W film under ultrahigh vacuum (UHV) conditions. This simple yet effective process yields large-area, homogeneous films of 2D TMDs, as confirmed by several characterization techniques, including reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and different spectroscopy methods. Memristors fabricated using the grown WSe2 film are leveraged to realize a novel compact neuron circuit that can be reconfigured to enable homeostasis.

2.
Nano Lett ; 19(3): 1976-1981, 2019 03 13.
Article de Anglais | MEDLINE | ID: mdl-30779591

RÉSUMÉ

The vertical stacking of van der Waals (vdW) materials introduces a new degree of freedom to the research of two-dimensional (2D) systems. The interlayer coupling strongly influences the band structure of the heterostructures, resulting in novel properties that can be utilized for electronic and optoelectronic applications. Based on microwave microscopy studies, we report quantitative electrical imaging on gated molybdenum disulfide (MoS2)/tungsten diselenide (WSe2) heterostructure devices, which exhibit an intriguing antiambipolar effect in their transfer characteristics. Interestingly, in the region with significant source-drain current, electrons in the n-type MoS2 and holes in the p-type WSe2 segments are nearly balanced, whereas the heterostructure area is depleted of mobile charges. The spatial evolution of local conductance can be ascribed to the lateral band bending and formation of depletion regions along the line of MoS2-heterostructure-WSe2. Our work vividly demonstrates the microscopic origin of novel transport behaviors, which is important for the vibrant field of vdW heterojunction research.

3.
Nano Lett ; 18(9): 5967-5973, 2018 09 12.
Article de Anglais | MEDLINE | ID: mdl-30105907

RÉSUMÉ

We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally aligned we observe resonant tunneling, manifested by a large conductance and negative differential resistance in the vicinity of zero interlayer bias, which stem from energy- and momentum-conserving tunneling. Because the spin-orbit coupling leads to coupled spin-valley degrees of freedom, the twist between the two WSe2 monolayers allows us to probe the conservation of spin-valley degree of freedom in tunneling. In heterostructures where the two WSe2 monolayers have a 180° relative twist, such that the Brillouin zone of one layer is aligned with the time-reversed Brillouin zone of the opposite layer, the resonant tunneling between the layers is suppressed. These findings provide evidence that, in addition to momentum, the spin-valley degree of freedom is also conserved in vertical transport.

4.
Phys Rev Lett ; 120(10): 107703, 2018 Mar 09.
Article de Anglais | MEDLINE | ID: mdl-29570322

RÉSUMÉ

We present a combined experimental and theoretical study of valley populations in the valence bands of trilayer WSe_{2}. Shubnikov-de Haas oscillations show that trilayer holes populate two distinct subbands associated with the K and Γ valleys, with effective masses 0.5m_{e} and 1.2m_{e}, respectively; m_{e} is the bare electron mass. At a fixed total hole density, an applied transverse electric field transfers holes from Γ orbitals to K orbitals. We are able to explain this behavior in terms of the larger layer polarizability of the K orbital subband.

5.
Nanotechnology ; 29(19): 195703, 2018 May 11.
Article de Anglais | MEDLINE | ID: mdl-29461256

RÉSUMÉ

Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature-crystalline or amorphous-of the substrate.

6.
Sci Adv ; 3(10): e1701661, 2017 10.
Article de Anglais | MEDLINE | ID: mdl-29062892

RÉSUMÉ

Integration of transition metal dichalcogenides (TMDs) into next-generation semiconductor platforms has been limited due to a lack of effective passivation techniques for defects in TMDs. The formation of an organic-inorganic van der Waals interface between a monolayer (ML) of titanyl phthalocyanine (TiOPc) and a ML of MoS2 is investigated as a defect passivation method. A strong negative charge transfer from MoS2 to TiOPc molecules is observed in scanning tunneling microscopy. As a result of the formation of a van der Waals interface, the ION/IOFF in back-gated MoS2 transistors increases by more than two orders of magnitude, whereas the degradation in the photoluminescence signal is suppressed. Density functional theory modeling reveals a van der Waals interaction that allows sufficient charge transfer to remove defect states in MoS2. The present organic-TMD interface is a model system to control the surface/interface states in TMDs by using charge transfer to a van der Waals bonded complex.

7.
ACS Nano ; 11(7): 7457-7467, 2017 07 25.
Article de Anglais | MEDLINE | ID: mdl-28692797

RÉSUMÉ

As the focus of applied research in topological insulators (TI) evolves, the need to synthesize large-area TI films for practical device applications takes center stage. However, constructing scalable and adaptable processes for high-quality TI compounds remains a challenge. To this end, a versatile van der Waals epitaxy (vdWE) process for custom-feature bismuth telluro-sulfide TI growth and fabrication is presented, achieved through selective-area fluorination and modification of surface free-energy on mica. The TI features grow epitaxially in large single-crystal trigonal domains, exhibiting armchair or zigzag crystalline edges highly oriented with the underlying mica lattice and only two preferred domain orientations mirrored at 180°. As-grown feature thickness dependence on lateral dimensions and denuded zones at boundaries are observed, as explained by a semiempirical two-species surface migration model with robust estimates of growth parameters and elucidating the role of selective-area surface modification. Topological surface states contribute up to 60% of device conductance at room temperature, indicating excellent electronic quality. High-yield microfabrication and the adaptable vdWE growth mechanism with readily alterable precursor and substrate combinations lend the process versatility to realize crystalline TI synthesis in arbitrary shapes and arrays suitable for facile integration with processes ranging from rapid prototyping to scalable manufacturing.

8.
Phys Rev Lett ; 118(24): 247701, 2017 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-28665633

RÉSUMÉ

We report a study of the quantum Hall states (QHS) of holes in mono- and bilayer WSe_{2}. The QHS sequence transitions between predominantly even and predominantly odd filling factors as the hole density is tuned in the range 1.6-12×10^{12} cm^{-2}. Measurements in tilted magnetic fields reveal an insensitivity of the QHS to the in-plane magnetic field, evincing that the hole spin is locked perpendicular to the WSe_{2} plane. Furthermore, the QHS sequence is insensitive to an applied electric field. These observations imply that the QHS sequence is controlled by the Zeeman-to-cyclotron energy ratio, which remains constant as a function of perpendicular magnetic field at a fixed carrier density, but changes as a function of density due to strong electron-electron interaction.

9.
ACS Nano ; 11(5): 4832-4839, 2017 05 23.
Article de Anglais | MEDLINE | ID: mdl-28414214

RÉSUMÉ

Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

10.
Sci Rep ; 7: 41856, 2017 02 03.
Article de Anglais | MEDLINE | ID: mdl-28157186

RÉSUMÉ

Because of the presence of 3d transition metals in the Earth's core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2-1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth's core under high pressure.

12.
Nano Lett ; 16(8): 4975-81, 2016 08 10.
Article de Anglais | MEDLINE | ID: mdl-27416362

RÉSUMÉ

Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.

13.
Phys Rev Lett ; 116(8): 086601, 2016 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-26967432

RÉSUMÉ

We study the magnetotransport properties of high-mobility holes in monolayer and bilayer WSe_{2}, which display well defined Shubnikov-de Haas (SdH) oscillations, and quantum Hall states in high magnetic fields. In both mono- and bilayer WSe_{2}, the SdH oscillations and the quantum Hall states occur predominantly at even filling factors, evincing a twofold Landau level degeneracy. The Fourier transform analysis of the SdH oscillations in bilayer WSe_{2} reveals the presence of two subbands localized in the top or the bottom layer, as well as negative compressibility. From the temperature dependence of the SdH oscillations we determine a hole effective mass of 0.45m_{0} for both mono- and bilayer WSe_{2}.

14.
ACS Appl Mater Interfaces ; 8(11): 7396-402, 2016 Mar 23.
Article de Anglais | MEDLINE | ID: mdl-26939890

RÉSUMÉ

We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states.

15.
Nano Lett ; 16(3): 1989-95, 2016 Mar 09.
Article de Anglais | MEDLINE | ID: mdl-26859527

RÉSUMÉ

We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

16.
ACS Nano ; 9(10): 10402-10, 2015 Oct 27.
Article de Anglais | MEDLINE | ID: mdl-26343531

RÉSUMÉ

We demonstrate dual-gated p-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe2) using high work-function platinum source/drain contacts and a hexagonal boron nitride top-gate dielectric. A device topology with contacts underneath the WSe2 results in p-FETs with ION/IOFF ratios exceeding 10(7) and contacts that remain ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm(2)/(V s) at room temperature and approaching 4000 cm(2)/(V s) at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering or defects.

17.
Nano Lett ; 15(10): 6626-33, 2015 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-26393281

RÉSUMÉ

Several proposed beyond-CMOS devices based on two-dimensional (2D) heterostructures require the deposition of thin dielectrics between 2D layers. However, the direct deposition of dielectrics on 2D materials is challenging due to their inert surface chemistry. To deposit high-quality, thin dielectrics on 2D materials, a flat lying titanyl phthalocyanine (TiOPc) monolayer, deposited via the molecular beam epitaxy, was employed to create a seed layer for atomic layer deposition (ALD) on 2D materials, and the initial stage of growth was probed using in situ STM. ALD pulses of trimethyl aluminum (TMA) and H2O resulted in the uniform deposition of AlOx on the TiOPc/HOPG. The uniformity of the dielectric is consistent with DFT calculations showing multiple reaction sites are available on the TiOPc molecule for reaction with TMA. Capacitors prepared with 50 cycles of AlOx on TiOPc/graphene display a capacitance greater than 1000 nF/cm(2), and dual-gated devices have current densities of 10(-7)A/cm(2) with 40 cycles.

18.
Nano Lett ; 15(7): 4329-36, 2015 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-26091062

RÉSUMÉ

To reduce Schottky-barrier-induced contact and access resistance, and the impact of charged impurity and phonon scattering on mobility in devices based on 2D transition metal dichalcogenides (TMDs), considerable effort has been put into exploring various doping techniques and dielectric engineering using high-κ oxides, respectively. The goal of this work is to demonstrate a high-κ dielectric that serves as an effective n-type charge transfer dopant on monolayer (ML) molybdenum disulfide (MoS2). Utilizing amorphous titanium suboxide (ATO) as the "high-κ dopant", we achieved a contact resistance of ∼180 Ω·µm that is the lowest reported value for ML MoS2. An ON current as high as 240 µA/µm and field effect mobility as high as 83 cm(2)/V-s were realized using this doping technique. Moreover, intrinsic mobility as high as 102 cm(2)/V-s at 300 K and 501 cm(2)/V-s at 77 K were achieved after ATO encapsulation that are among the highest mobility values reported on ML MoS2. We also analyzed the doping effect of ATO films on ML MoS2, a phenomenon that is absent when stoichiometric TiO2 is used, using ab initio density functional theory (DFT) calculations that shows excellent agreement with our experimental findings. On the basis of the interfacial-oxygen-vacancy mediated doping as seen in the case of high-κ ATO-ML MoS2, we propose a mechanism for the mobility enhancement effect observed in TMD-based devices after encapsulation in a high-κ dielectric environment.

19.
Nano Lett ; 15(1): 428-33, 2015 Jan 14.
Article de Anglais | MEDLINE | ID: mdl-25436861

RÉSUMÉ

We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

20.
ACS Nano ; 5(9): 7198-204, 2011 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-21800895

RÉSUMÉ

We demonstrate the synthesis of large-area graphene on Co, a complementary metal-oxide-semiconductor (CMOS)-compatible metal, using acetylene (C(2)H(2)) as a precursor in a chemical vapor deposition (CVD)-based method. Cobalt films were deposited on SiO(2)/Si, and the influence of Co film thickness on monolayer graphene growth was studied, based on the solubility of C in Co. The surface area coverage of monolayer graphene was observed to increase with decreasing Co film thickness. A thorough Raman spectroscopic analysis reveals that graphene films, grown on an optimized Co film thickness, are principally composed of monolayer graphene. Transport properties of monolayer graphene films were investigated by fabrication of back-gated graphene field-effect transistors (GFETs), which exhibited high hole and electron mobility of ∼1600 cm(2)/V s and ∼1000 cm(2)/V s, respectively, and a low trap density of ∼1.2 × 10(11) cm(-2).

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...