Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Sujet principal
Gamme d'année
1.
Front Pharmacol ; 11: 83, 2020.
Article de Anglais | MEDLINE | ID: mdl-32180715

RÉSUMÉ

Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by persistent elevated blood pressure in the pulmonary circulation, due to increased resistance to blood flow, through the lungs. Advances in the understanding of the pathobiology of PAH clarify the role of leukotrienes (LTs) that appear to be an exciting new target for disease intervention. Over the years, our group has long investigated this field, detecting the 1,2-benzoquinone RF-22c as the most powerful and selective competitive inhibitor of the enzyme 5-lipoxygenase (5-LO). With the aim to improve the bioavailability of RF-22c and to confirm the role of 5-LO as therapeutic strategy for PAH treatment, we developed a solid lipid nanoparticle (SLN) loaded with drug. Therefore, in monocrotaline (MCT) rat model of PAH, the role of 5-LO has been investigated through the formulation of RF-22c-SLN. The rats were randomly grouped into control group, MCT group, and MCT + RF22-c group. After 21 days, all the animals were sacrificed to perform functional and histological evaluations. RF22-c-SLN treatment was able to significantly reduce the mean pulmonary arterial pressure (mPAP) and precapillary resistance (R-pre) compared to the MCT group. The MCT induced rise in medial wall thickness of pulmonary arterioles, and the cardiomyocytes width were significantly attenuated by RF22-c-SLN formulation upon treatment. The results showed that the selective inhibition of 5-LO improved hemodynamic parameters as well as vascular and cardiac remodeling by preventing induced pulmonary hypertension. The improved sustained release properties and targeting abilities achieved with the innovative nanotechnological approach may be therapeutically beneficial for PAH patients as a consequence of the increase of pharmacological effects and of the possible reduction and/or optimization of the drug frequency of administration.

2.
Phytochemistry ; 174: 112359, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-32220788

RÉSUMÉ

Our investigation focused on the characterization and study of epicuticular leaf extracts (dichloromethane extract) and certain derivatives of Lithrea caustica (Molina) Hook and Arn. (Anacardiaceae) as inhibitors of 15 soybean and 5 human lipoxygenases (15-sLOX and 5-hLOX). From the epicuticular extract of leaves, the compound (Z)-3-(pentadec-10'-enyl)-catechol (Litreol) was isolated, and three hemisynthetic derivatives were prepared, as they are 3-pentadecylcatechol, (Z)-1,2-diacetyl-3-(pentadec-10'-enyl)-benzene and 1,2-diacetyl-3-pentadecylbenzene. The inhibitory activities for the four compounds against 15-sLOX and 5-hLOX were determined, being (Z)-3-(pentadec-10'-enyl)-catechol (IC50 54.77 µM and 2.09 µM, respectively) and 3-pentadecylcatechol (IC50 55.28 µM and 2.74 µM, respectively), the most interesting compounds assayed. The kinetic studies for (Z)-3-(pentadec-10'-enyl)-catechol and 3-pentadecylcatechol showed a mixed inhibition mechanism to 5-LOX. Finally, docking and molecular dynamics studies were performed to characterize and describe how the chemical structures could be correlated to the decreased 5-hLOX activity observed in the in vitro studies.


Sujet(s)
Anacardiaceae , Humains , Cinétique , Lipoxygenase , Inhibiteurs de la lipoxygénase , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Isoformes de protéines
3.
Front Pharmacol ; 11: 594257, 2020.
Article de Anglais | MEDLINE | ID: mdl-33390977

RÉSUMÉ

Lithraea caustica (Molina) Hook. and Arn. (Anacardiaceae), common name Litre, is an evergreen endemic plant used in the Mapuche Chilean folk medicine. The stem juice of L. caustica mixed with Rubus ulmifolius (blackberry) is used to treat cough and the infusion of leaves is used in baths to treat joint inflammations. In this study, the activities of 3-n-alk(en)yl-catechols, obtained from the dichloromethane extract of the epicuticular compounds of fresh leaves (DCME), stem bark petroleum ether extract (PEE), fractions of phenols and phenol-acid compounds obtained from the methanolic extract (methanolic extract) of defatted leaves and aqueous infusion (AE) from fresh leaves, were evaluated as in vitro inhibitors of soybean 15-lipoxygenase (15-sLOX) and human 5-lipoxygenase (5-hLOX), one of the inflammation pathways. The 3-n-alk(en)yl-catechols were characterized by gas chromatography-mass spectrometry and 1D and 2D nuclear magnetic resonance analysis as mixtures of 3-[(10E)-pentadec-10'-en-1-yl]-catechol, 3-[(10Z)-pentadec-10'-en-1-yl]-catechol and 3-n-pentadecylcatechol. In addition, two fractions, obtained from MeOHE, were characterized by liquid chromatography electrospray ionization tandem mass spectrometric as complex mixtures of known acids and phenolic compounds. DCME, MeOHE and ethyl acetate extract (AcOEtE) extracts showed inhibition against 15-sLOX, and the AE of fresh leaves, showed the best inhibition against 5-hLOX. The mixture of 3-n-alk(en)yl-catechols showed inhibition of 15-sLOX and 5-hLOX. The compounds 3-[(10Z)-pentadec-10'-en-1-yl]-catechol (IC50 2.09 µM) and 3-n-pentadecylcatechol (IC50 2.74 µM) showed inhibition against 5-hLOX. The inhibition values obtained for the 3-n-alk(en)yl-catechols are in the range of well-known inhibitors of 5-hLOX. Acetylation of the 3-n-alk(en)yl-catechols blocks the inhibitory activity, indicating that the free catechol function is necessary for the enzyme inhibition. In addition, the fractions of phenols and phenol-acid compounds showed inhibitory activity against 15-sLOX and the AE, showed a good inhibition against 5-hLOX. These results would be in agreement with the use of L. caustica, as an anti-inflammatory in Mapuche ethnomedicine.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...