Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Adv Res ; 31: 177-189, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-34194841

RÉSUMÉ

INTRODUCTION: Fractional Order Internal Model Control (FO-IMC) extends the capabilities of the classical IMC approach into the generalized domain of fractional calculus. When dealing with processes that exhibit time delays, implementation of such controllers in a classical feedback loop requires the approximation of the fractional order terms, as well as of the corresponding time delays. OBJECTIVES: The present study proposes an alternative design procedure of FO-IMC controllers based on a novel approximation method of the process time delay, proving the efficiency of the proposed method and its suitability for time delay systems. METHODS: The generalized IMC control laws are obtained analytically, based on a novel approximation of time delay, the Non-Rational Transfer Function approach. RESULTS: Several numerical examples are chosen to illustrate the efficiency of the proposed approach. In addition, a vertical take-off and landing unit exhibiting second order plus time delay dynamics is chosen to experimentally validate the proposed control strategy. The obtained results are used to compare the proposed tuning strategy with a popular FO-IMC tuning approach, based on the Taylor series approximation of the time delay. CONCLUSION: All the chosen examples, both numerical and experimental ones, validate the proposed method. The overall closed loop results obtained with the proposed approach demonstrate an improved performance compared to the existing method. Ultimately, the purpose of the paper to provide an alternative design strategy that extends the existing FO-IMC control field is reached.

2.
Philos Trans A Math Phys Eng Sci ; 378(2172): 20190284, 2020 May 29.
Article de Anglais | MEDLINE | ID: mdl-32389081

RÉSUMÉ

The paper proposes a mathematical framework for the use of fractional-order impedance models to capture fluid mechanics properties in frequency-domain experimental datasets. An overview of non-Newtonian (NN) fluid classification is given as to motivate the use of fractional-order models as natural solutions to capture fluid dynamics. Four classes of fluids are tested: oil, sugar, detergent and liquid soap. Three nonlinear identification methods are used to fit the model: nonlinear least squares, genetic algorithms and particle swarm optimization. The model identification results obtained from experimental datasets suggest the proposed model is useful to characterize various degree of viscoelasticity in NN fluids. The advantage of the proposed model is that it is compact, while capturing the fluid properties and can be identified in real-time for further use in prediction or control applications. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...