Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Am Chem Soc ; 146(6): 4098-4111, 2024 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-38301208

RÉSUMÉ

Organoplutonium chemistry was established in 1965, yet structurally authenticated plutonium-carbon bonds remain rare being limited to π-bonded carbocycle and σ-bonded isonitrile and hydrocarbyl derivatives. Thus, plutonium-carbenes, including alkylidenes and N-heterocyclic carbenes (NHCs), are unknown. Here, we report the preparation and characterization of the diphosphoniomethanide-plutonium complex [Pu(BIPMTMSH)(I)(µ-I)]2 (1Pu, BIPMTMSH = (Me3SiNPPh2)2CH) and the diphosphonioalkylidene-plutonium complexes [Pu(BIPMTMS)(I)(DME)] (2Pu, BIPMTMS = (Me3SiNPPh2)2C) and [Pu(BIPMTMS)(I)(IMe4)2] (3Pu, IMe4 = C(NMeCMe)2), thus disclosing non-actinyl transneptunium multiple bonds and transneptunium NHC complexes. These Pu-C double and dative bonds, along with cerium, praseodymium, samarium, uranium, and neptunium congeners, enable lanthanide-actinide and actinide-actinide comparisons between metals with similar ionic radii and isoelectronic 4f5 vs 5f5 electron-counts within conserved ligand fields over 12 complexes. Quantum chemical calculations reveal that the orbital-energy and spatial-overlap terms increase from uranium to neptunium; however, on moving to plutonium the orbital-energy matching improves but the spatial overlap decreases. The bonding picture that emerges is more complex than the traditional picture of the bonding of lanthanides being ionic and early actinides being more covalent but becoming more ionic left to right. Multiconfigurational calculations on 2M and 3M (M = Pu, Sm) account for the considerably more complex UV/vis/NIR spectra for 5f5 2Pu and 3Pu compared to 4f5 2Sm and 3Sm. Supporting the presence of Pu═C double bonds in 2Pu and 3Pu, 2Pu exhibits metallo-Wittig bond metathesis involving the highest atomic number element to date, reacting with benzaldehyde to produce the alkene PhC(H)═C(PPh2NSiMe3)2 (4) and "PuOI". In contrast, 2Ce and 2Pr do not react with benzaldehyde to produce 4.

2.
Chem Sci ; 14(27): 7438-7446, 2023 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-37449075

RÉSUMÉ

Reaction of the terphenyl bis(anilide) ligand [{K(DME)2}2LAr] (LAr = {C6H4[(2,6-iPr2C6H3)NC6H4]2}2-) with trivalent chloride "MCl3" salts (M = Ce, U, Np) yields two distinct products; neutral LArM(Cl)(THF) (1M) (M = Np, Ce), and the "-ate" complexes [K(DME)2][(LAr)Np(Cl)2] (2Np) or ([LArM(Cl)2(µ-K(X)2)])∞ (2Ce, 2U) (M = Ce, U) (X = DME or Et2O) (2M). Alternatively, analogous reactions with the iodide [MI3(THF)4] salts provide access to the neutral compounds LArM(I)(THF) (3M) (M = Ce, U, Np, Pu). All complexes exhibit close arene contacts suggestive of η6-interactions with the central arene ring of the terphenyl backbone, with 3M comprising the first structurally characterized Pu η6-arene moiety. Notably, the metal-arene bond metrics diverge from the predicted trends of metal-carbon interactions based on ionic radii, with the uranium complexes exhibiting the shortest M-Ccentroid distance in all cases. Overall, the data presents a systematic study of f-element M-η6-arene complexes across the early actinides U, Np, Pu, and comparison to cerium congeners.

3.
Anal Chem ; 95(23): 9123-9129, 2023 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-37261935

RÉSUMÉ

In nuclear forensic analyses, measurements of actinide elements in a sample can assist with identifying interdicted or unknown materials. While these radiochemical signatures have been extensively investigated in uranium materials, less is known about bulk neptunium samples. This paper describes the measurement of trace actinide concentrations and isotopic profiles in a 237Np oxide sample. Uranium, plutonium, americium, and curium concentrations and isotopic profiles in the sample were determined and deemed potentially useful for distinguishing different sources of 237Np. Several different potential radiochronometry systems were also investigated; discordant results indicate that the Np sample was never completely purified of other actinide elements, or that subsequent contamination of the sample occurred. Few prior studies of neptunium materials have been reported, and these data suggest that trace actinide constituents could provide unique signatures to identify material out of regulatory control.

4.
Inorg Chem ; 62(15): 5897-5905, 2023 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-36576312

RÉSUMÉ

1,3,5-Trimethyl-1,3,5-triazacyclohexane (Me3tach) readily complexes uranium triiodide to form (Me3tach)2UI3. The complex is soluble in THF and arenes and can function as a source of UI3 to form organometallic U(III) complexes. When dissolved in pyridine (py), (Me3tach)2UI3 forms (Me3tach)UI3(py)2. A related complex with the larger 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligand, namely (Me3tacn)UI3(THF), was synthesized for comparison. Since X-ray quality crystals of (Me3tach)2UI3 can be synthesized in high yield even with small-scale reactions, the system is ideal for extension to transuranium elements. Accordingly, the neptunium and plutonium complexes (Me3tach)2NpI3 and (Me3tach)2PuI3 were synthesized in an analogous manner from NpI3(THF)4 and PuI3(THF)4, respectively.

5.
Chem Commun (Camb) ; 58(65): 9112-9115, 2022 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-35880486

RÉSUMÉ

An unprecedented sandwich complex of the actinides is synthesized from the treatment of [UI2(HMPA)4]I (HMPA = OP(NMe2)3) (2) with 3 equiv. of K(C14H10) to give the neutral, bis(arenide) species U(η6-C14H10)(η4-C14H10)(HMPA)2 (1). Solid-state X-ray, SQUID magnetometry, and XANES analyses are consistent with tetravalent uranium supported by [C14H10]2- ligands. In one case, treatment of 1 with an equiv. of AgOTf led to the isolation of U(η6-C14H10)2(HMPA)(THF) (3), formed from ring migration and haptotropic rearrangement. Complete active space (CASSCF) calculations indicate the U-C bonding to solely consist of π-interactions, presenting a unique electronic structure distinct from classic actinide sandwich compounds.

6.
J Am Chem Soc ; 144(22): 9764-9774, 2022 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-35609882

RÉSUMÉ

Since the advent of organotransuranium chemistry six decades ago, structurally verified complexes remain restricted to π-bonded carbocycle and σ-bonded hydrocarbyl derivatives. Thus, transuranium-carbon multiple or dative bonds are yet to be reported. Here, utilizing diphosphoniomethanide precursors we report the synthesis and characterization of transuranium-carbene derivatives, namely, diphosphonio-alkylidene- and N-heterocyclic carbene-neptunium(III) complexes that exhibit polarized-covalent σ2π2 multiple and dative σ2 single transuranium-carbon bond interactions, respectively. The reaction of [NpIIII3(THF)4] with [Rb(BIPMTMSH)] (BIPMTMSH = {HC(PPh2NSiMe3)2}1-) affords [(BIPMTMSH)NpIII(I)2(THF)] (3Np) in situ, and subsequent treatment with the N-heterocyclic carbene {C(NMeCMe)2} (IMe4) allows isolation of [(BIPMTMSH)NpIII(I)2(IMe4)] (4Np). Separate treatment of in situ prepared 3Np with benzyl potassium in 1,2-dimethoxyethane (DME) affords [(BIPMTMS)NpIII(I)(DME)] (5Np, BIPMTMS = {C(PPh2NSiMe3)2}2-). Analogously, addition of benzyl potassium and IMe4 to 4Np gives [(BIPMTMS)NpIII(I)(IMe4)2] (6Np). The synthesis of 3Np-6Np was facilitated by adopting a scaled-down prechoreographed approach using cerium synthetic surrogates. The thorium(III) and uranium(III) analogues of these neptunium(III) complexes are currently unavailable, meaning that the synthesis of 4Np-6Np provides an example of experimental grounding of 5f- vs 5f- and 5f- vs 4f-element bonding and reactivity comparisons being led by nonaqueous transuranium chemistry rather than thorium and uranium congeners. Computational analysis suggests that these NpIII═C bonds are more covalent than UIII═C, CeIII═C, and PmIII═C congeners but comparable to analogous UIV═C bonds in terms of bond orders and total metal contributions to the M═C bonds. A preliminary assessment of NpIII═C reactivity has introduced multiple bond metathesis to transuranium chemistry, extending the range of known metallo-Wittig reactions to encompass actinide oxidation states III-VI.

7.
Chem Sci ; 12(40): 13360-13372, 2021 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-34777754

RÉSUMÉ

Addition of [UI2(THF)3(µ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(µ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(µ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 µ B) is significantly lower than that of 118C6·4THF (4.40 µ B) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(µ-OMe)]2}2- (1*) shows highly polarized uranium-arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide-arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects.

8.
Angew Chem Int Ed Engl ; 60(10): 5184-5188, 2021 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-33247485

RÉSUMÉ

Vacancy-ordered double perovskites are attracting significant attention due to their chemical diversity and interesting optoelectronic properties. With a view to understanding both the optical and magnetic properties of these compounds, two series of RuIV halides are presented; A2 RuCl6 and A2 RuBr6 , where A is K, NH4 , Rb or Cs. We show that the optical properties and spin-orbit coupling (SOC) behavior can be tuned through changing the A cation and the halide. Within a series, the energy of the ligand-to-metal charge transfer increases as the unit cell expands with the larger A cation, and the band gaps are higher for the respective chlorides than for the bromides. The magnetic moments of the systems are temperature dependent due to a non-magnetic ground state with Jeff =0 caused by SOC. Ru-X covalency, and consequently, the delocalization of metal d-electrons, result in systematic trends of the SOC constants due to variations in the A cation and the halide anion.

9.
Inorg Chem ; 59(12): 8629-8634, 2020 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-32492338

RÉSUMÉ

Reaction of [Li(THF)]4[L] (L = Me8-calix[4]pyrrole]) with 0.5 equiv of [UVIO2Cl2(THF)2]2 results in formation of the oxidized calix[4]pyrrole product, [Li(THF)]2[LΔ] (1), concomitant with formation of reduced uranium oxide byproducts. Complex 1 can also be generated by reaction of [Li(THF)]4[L] with 1 equiv of I2. We hypothesize that formation of 1 proceeds via formation of a highly oxidizing cis-uranyl intermediate, [Li]2[cis-UVIO2(calix[4]pyrrole)]. To test this hypothesis, we explored the reaction of 1 with either 0.5 equiv of [UVIO2Cl2(THF)2]2 or 1 equiv of [UVIO2(OTf)2(THF)3], which affords the isostructural uranyl complexes, [Li(THF)][UVIO2(LΔ)Cl(THF)] (2) and [Li(THF)][UVIO2(LΔ)(OTf)(THF)] (3), respectively. In the solid state, 2 and 3 feature unprecedented uranyl-η5-pyrrole interactions, making them rare examples of uranyl organometallic complexes. In addition, 2 and 3 exhibit some of the smallest O-U-O angles reported to date (2: 162.0(7) and 162.7(7)°; 3: 164.5(5)°). Importantly, the O-U-O bending observed in these complexes suggests that the oxidation of [Li(THF)]4[L] does indeed occur via an unobserved cis-uranyl intermediate.

10.
Nanoscale ; 11(47): 23035-23041, 2019 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-31774082

RÉSUMÉ

The ability of the tetragonal prismatic nanocapsule 1·(BArF)8 to selectively encapsulate U-based C78 EMFs from a soot mixture is reported, showing enhanced affinity for C78-based EMFs over C80-based EMFs. Molecular recognition driven by the electrostatic interactions between the host and guest is at the basis of the high selectivity observed for ellipsoidal C78-based EMFs compared to spherical C80-based EMFs. In addition, DFT analysis points towards an enhanced breathing adaptability of nanocapsule 1·(BArF)8 to C78-based EMFs to further explain the selectivity observed when the host is used in the solid phase.

11.
J Am Chem Soc ; 139(44): 15691-15700, 2017 11 08.
Article de Anglais | MEDLINE | ID: mdl-28953380

RÉSUMÉ

Utilizing the bulky guanidinate ligand [LAr*]- (LAr* = (Ar*N)2C(R), Ar* = 2,6-bis(diphenylmethyl)-4-tert-butylphenyl, R = NCtBu2) for kinetic stabilization, the synthesis of a rare terminal Fe(IV) nitride complex is reported. UV irradiation of a pyridine solution of the Fe(II) azide [LAr*]FeN3(py) (3-py) at 0 °C cleanly generates the Fe(IV) nitride [LAr*]FeN(py) (1). The 15N NMR spectrum of the 115N (50% Fe≡15N) isotopomer shows a resonance at 1016 ppm (vs externally referenced CH3NO2 at 380 ppm), comparable to that known for other terminal iron nitrides. Notably, the computed structure of 1 reveals an iron center with distorted tetrahedral geometry, τ4 = 0.72, featuring a short Fe≡N bond (1.52 Å). Inspection of the frontier orbital ordering of 1 shows a relatively small HOMO/LUMO gap with the LUMO comprised by Fe(dxz,yz)N(px,y) π*-orbitals, a splitting that is manifested in the electronic absorption spectrum of 1 (λ = 610 nm, ε = 1375 L·mol-1·cm-1; λ = 613 nm (calcd)). Complex 1 persists in low-temperature solutions of pyridine but becomes unstable at room temperature, gradually converting to the Fe(II) hydrazide product [κ2-(tBu2CN)C(η6-NAr*)(N-NAr*)]Fe (4) upon standing via intramolecular N-atom insertion. This reactivity of the Fe≡N moiety was assessed through molecular orbital analysis, which suggests electrophilic character at the nitride functionality. Accordingly, treatment of 1 with the nucleophiles PMe2Ph and Ar-N≡C (Ar = 2,6-dimethylphenyl) leads to partial N-atom transfer and formation of the Fe(II) addition products [LAr*]Fe(N═PMe2Ph)(py) (5) and [LAr*]Fe(N═C═NAr)(py) (6). Similarly, 1 reacts with PhSiH3 to give [LAr*]Fe[N(H)(SiH2Ph)](py) (7) which Fukui analysis shows to proceed via electrophilic insertion of the nitride into the Si-H bond.

12.
J Periodontol ; 79(11): 2190-9, 2008 Nov.
Article de Anglais | MEDLINE | ID: mdl-18980529

RÉSUMÉ

BACKGROUND: Advanced glycation end products (AGEs) have been linked to pathogenic mechanisms of diabetes mellitus. However, little is known about the contribution of protein glycation to periodontal disease in patients with diabetes. Therefore, this study investigated whether glycation of type I collagen (COLI) and fibronectin (FN) modified the behavior of human gingival fibroblasts (hGFs) and periodontal ligament fibroblasts (hPDLs). METHODS: Procedures for rapid in vitro glycation of COLI and FN used methylglyoxal (MG). Formation of AGEs was analyzed by changes in protein migration using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting with antibodies specific for MG-glycated proteins. Experiments then characterized the effects of glycated FN and COLI on the behavior of hGFs and hPDLs. RESULTS: MG glycated COLI and FN in <6 hours. Confirming the specificity of the reactions, antibodies specific for MG-induced AGEs reacted with glycated FN and COLI but not with control proteins. In cell culture experiments, glycated FN was significantly less efficient in supporting the attachment of hGFs and hPDLs (P <0.05). Moreover, the morphologic parameters, including length, area, perimeter, and shape factor, were altered (P <0.001) for cells on both glycated proteins. Finally, cell migration was reduced on glycated FN and COLI (P <0.001). CONCLUSIONS: MG treatment efficiently glycated COLI and FN, providing a new tool to study the effects of diabetes on periodontal disease. The substantial effects of glycated COLI and FN on hGF and hPDL behavior indicated that protein glycation contributed to the pathogenesis and altered periodontal wound healing observed in patients with diabetes.


Sujet(s)
Collagène de type I/métabolisme , Fibroblastes/métabolisme , Fibronectines/métabolisme , Gencive/métabolisme , Produits terminaux de glycation avancée/métabolisme , Desmodonte/métabolisme , Protéines de la matrice extracellulaire/métabolisme , Gencive/cytologie , Humains , Desmodonte/cytologie , Méthylglyoxal/métabolisme , Statistique non paramétrique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...