Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-37817536

RÉSUMÉ

Crude or semi-purified extracts of plants can play a significant role as antitumor agents. They were used as stabilizing and reducing agents in the preparation of silver nanoparticles (AgNPs) that allows these particles to have more efficient cytotoxic activity. In the current study, the extract of Marrubium alysson L., a plant of common occurrence in Egypt was used to synthesize AgNPs for the first time, where comparison of anticancer activity of crude and phenolic extracts with the AgNPs were extensively studied against cancer cell lines PC-3 and HCT-116. Interestingly, AgNPs of the crude extract exhibited promising cytotoxicity with IC50 values of 10.4 and 16.3 µg/ml, while AgNPs of the phenolic extract exhibited very potent cytotoxicity with IC50 values of 2.66 and 1.34 µg/ml compared to Doxorubicin (as a standard reference drug) that exhibited IC50 values of 5.13 and 4.36 µg/ml, respectively against the tested cells. Additionally, AgNPs of the phenolic extract induced apoptosis in HCT-116 with a higher ratio than in PC-3 cells. It induced apoptosis in PC-3 cells by 79.3-fold change, while it induced total colon apoptotic cell death by 228.3-fold change compared to untreated control. Finally, the apoptotic activity of AgNPs of the phenolic extract in the treated PC-3 and HCT-116 cells was confirmed using RT-PCR. As a result, AgNPs of the phenolic extract could be considered a promising anticancer candidate through apoptosis-induction.Communicated by Ramaswamy H. Sarma.

2.
Int J Pharm ; 640: 123023, 2023 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-37150270

RÉSUMÉ

A newly synthesized nanoplatform of hyaluronic acid and chitosan nanoparticles (HA/CNPs) was applied to improve the therapeutic efficacy and protection of bone marrow mesenchymal stem cells (BM-MSCs) against cisplatin (CDDP)-induced nephrotoxicity in rats. CDDP administration causes significant increases in levels of serum creatinine (SCr), urea, and KIM-1 coupled with significant albumin level falls, as indicative of acute renal dysfunction. Moreover, the level of the antioxidant enzyme (GSH) was significantly decreased, while the levels of lipid peroxidation (MDA) and inflammatory (IL-6) and apoptotic (caspase-3) markers were significantly increased, indicating a decline in the kidney's antioxidant defense and increased inflammation. In contrast, when rats were pre-treated with either MSCs or MSCs-HA/CNPs before receiving CDDP, the levels of SCr, urea, KIM-1, MDA, IL-6, and caspase-3 were significantly decreased with simultaneous significant rises in GSH and albumin, impelling a great improvement in the antioxidant and anti-inflammatory defenses of the kidney as well as its functions. Intriguingly, MSCs-HA/CNPs were more effective against caspase-3 than MSCs alone, revealing the high anti-apoptotic capability of HA/CNPs. This finding suggests that HA/CNPs could effectively protect MSCs from oxidative stress and apoptosis and thus increase their stability and longevity.


Sujet(s)
Chitosane , Cellules souches mésenchymateuses , Rats , Animaux , Cisplatine/toxicité , Cisplatine/métabolisme , Acide hyaluronique/pharmacologie , Caspase-3/métabolisme , Chitosane/pharmacologie , Antioxydants/pharmacologie , Antioxydants/métabolisme , Interleukine-6/métabolisme , Rein , Adjuvants immunologiques/pharmacologie , Stress oxydatif , Urée/métabolisme , Apoptose
3.
Antibiotics (Basel) ; 12(4)2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-37107069

RÉSUMÉ

Treatment of dermatophytosis is quite challenging. This work aims to investigate the antidermatophyte action of Azelaic acid (AzA) and evaluate its efficacy upon entrapment into transethosomes (TEs) and incorporation into a gel to enhance its application. Optimization of formulation variables of TEs was carried out after preparation using the thin film hydration technique. The antidermatophyte activity of AzA-TEs was first evaluated in vitro. In addition, two guinea pig infection models with Trichophyton (T.) mentagrophytes and Microsporum (M.) canis were established for the in vivo assessment. The optimized formula showed a mean particle size of 219.8 ± 4.7 nm and a zeta potential of -36.5 ± 0.73 mV, while the entrapment efficiency value was 81.9 ± 1.4%. Moreover, the ex vivo permeation study showed enhanced skin penetration for the AzA-TEs (3056 µg/cm2) compared to the free AzA (590 µg/cm2) after 48 h. AzA-TEs induced a greater inhibition in vitro on the tested dermatophyte species than free AzA (MIC90 was 0.01% vs. 0.32% for T. rubrum and 0.032% for T. mentagrophytes and M. canis vs. 0.56%). The mycological cure rate was improved in all treated groups, specially for our optimized AzA-TEs formula in the T. mentagrophytes model, in which it reached 83% in this treated group, while it was 66.76% in the itraconazole and free AzA treated groups. Significant (p < 0.05) lower scores of erythema, scales, and alopecia were observed in the treated groups in comparison with the untreated control and plain groups. In essence, the TEs could be a promising carrier for AzA delivery into deeper skin layers with enhanced antidermatophyte activity.

4.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-36355507

RÉSUMÉ

The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV-VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.

5.
Pharmaceutics ; 14(11)2022 Oct 24.
Article de Anglais | MEDLINE | ID: mdl-36365087

RÉSUMÉ

The objective of this study was to formulate and evaluate valsartan (VLT) ethosomes to prepare an optimized formula of VLT-entrapped ethosomes that could be incorporated into a sustained release transdermal gel dosage form. The formulation of the prepared ethosomal gel was investigated and subjected to in vitro drug release studies, ex vivo test, and in vivo studies to assess the effectiveness of ethosomal formulation in enhancing the bioavailability of VLT as a poorly soluble drug and in controlling its release from the transdermal gel dosage form. The acquired results are as follows: Dependent responses were particle size, polydispersity index, zeta potential, and entrapment efficiency. The optimized VLT-ETHs had a nanometric diameter (45.8 ± 0.5 nm), a negative surface charge (-51.4 ± 6.3 mV), and a high drug encapsulation (94.24 ± 0.2). The prepared VLT ethosomal gel (VLT-ethogel) showed a high peak plasma concentration and enhanced bioavailability in rats compared with the oral solution of valsartan presented in the higher AUC (0-∞). The AUC (0-∞) with oral treatment was 7.0 ± 2.94 (µg.h/mL), but the AUC (0-∞) with topical application of the VAL nanoethosomal gel was 137.2 ± 49.88 (µg.h/mL), providing the sustained release pattern of VLT from the tested ethosomal gel.

6.
Molecules ; 27(19)2022 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-36234842

RÉSUMÉ

Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 µg/mL and 0.94 µg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates.


Sujet(s)
Cynara scolymus , Nanoparticules métalliques , Tumeurs , Antioxydants/composition chimique , Apoptose , Acide ascorbique , Lignée cellulaire , Cynara scolymus/composition chimique , Doxorubicine , Inflorescence/composition chimique , Phénols/composition chimique , Extraits de plantes/composition chimique , Polyphénols/pharmacologie , Argent
7.
Pharmaceutics ; 14(10)2022 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-36297619

RÉSUMÉ

Different parts of Cynara scolymus L. and their green synthesized eco-friendly silver nanoparticles (AgNPs) were screened for their cytotoxicity and apoptotic activity. Results showed that flower extract AgNPs exhibited more potent cytotoxicity compared to the normal form against PC-3 and A549 cell lines with IC50 values of 2.47 µg/mL and 1.35 µg/mL, respectively. The results were compared to doxorubicin (IC50 = 5.13 and 6.19 µg/mL, respectively). For apoptosis-induction, AgNPs prepared from the flower extract induced cell death by apoptosis by 41.34-fold change and induced necrotic cell death by 10.2-fold. Additionally, they induced total prostate apoptotic cell death by a 16.18-fold change, and it slightly induced necrotic cell death by 2.7-fold. Hence, green synthesized flower extract AgNPs exhibited cytotoxicity in A549 and PC-3 through apoptosis-induction in both cells. Consequently, synthesized AgNPs were further tested for apoptosis and increased gene and protein expression of pro-apoptotic markers while decreasing expression of anti-apoptotic genes. As a result, this formula may serve as a promising source for anti-cancer candidates. Finally, liquid chromatography combined with electrospray mass spectrometry (LC-ESI-MS) analysis was assessed to identify the common bioactive metabolites in crude extracts of stem, flower, and bract.

8.
Pharmaceutics ; 14(7)2022 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-35890215

RÉSUMÉ

(1) Background: Virgin olive oil (VOO) has attracted the attention of many researchers due to its nutritional and medicinal values. However, VOO's biological applications have been limited due to a lack of precise chemical profiling and approach to increase the physicochemical characteristics, bioactivity, and delivery of its bioactive components; (2) Methods: The current study intended to evaluate the chemical composition of VOO using the GC-MS technique and determine its major components. Furthermore, the effect of incorporating VOO into Tween 80-lecithin nanoemulsion (OONE) and a quaternized trimethyl chitosan-thiol (TMCT) hydrogel-thickened nanoemulsion system (OOHTN) on its physicochemical characteristics and biological potentials will be investigated; (3) Results: The VOO-based NEs' physicochemical properties (particle size and zeta potential) were steady during storage for four weeks owing to the inclusion of the protective TMCT hydrogel network to OONE. Excessive fine-tuning of olive oil nanoemulsion (OONE) and the TMCT protective network's persistent positive charge have contributed to the oil's improved antimicrobial, anti-biofilm, and antioxidant potentials; (4) Conclusions: The Tween 80-lecithin-TMCT nanosystem might provide a unique and multifunctional nanoplatform for efficient topical therapy as well as the transdermal delivery of lipophilic bioactive compounds.

9.
Pharmaceutics ; 14(7)2022 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-35890246

RÉSUMÉ

(1) Background: Thymus vulgaris L. (thyme) essential oil (TEO) has gained much attention because of its long history of medicinal usage. However, the lack of precise chemical profiling of the TEO and methods to optimize the bioactivity and delivery of its constituents has hampered its research on quality control and biological function; (2) Methods: The current study aimed to analyze the TEO's chemical composition using the GC-MS method and identify its key components. Another objective of this work is to study the impact of the protective layer of amphiphilic oligochitosan (AOC) on the physicochemical stability and transdermal potentials of TEO multilayer nanoemulsions formulated by the incorporation of TEO, Tween80, lecithin (Lec), and AOC; (3) Results: The AOC protective layer significantly improved the stability of TEO-based NEs as revealed by the constancy of their physicochemical properties (particle size and zeta potential) during storage for a week. Excessive fine-tuning of thyme extract NEs and the AOC protective layer's persistent positive charge have been contributed to the thyme extract's improved anti-inflammatory, transdermal, and anti-melanoma potentials; (4) Conclusions: the AOC-coated NEs could offer novel multifunctional nanoplatforms for effective transdermal delivery of lipophilic bioactive materials.

10.
Front Microbiol ; 13: 1078061, 2022.
Article de Anglais | MEDLINE | ID: mdl-36687608

RÉSUMÉ

Introduction: Diabetes mellitus is a chronic metabolic disorder that exhibited great expansion all over the world. It is becoming an epidemic disease adding a major burden to the health care system, particularly in developing countries. Methods: The plant under investigation in the current study Phragmanthera austroarabica A. G. Mill and J. A. Nyberg is traditionally used in Saudi Arabia for the treatment of diabetes mellitus. The methanolic extract (200 mg/kg) of the plant and pure gallic acid (40 mg/kg), a major metabolite of the plant, as well as their silver nanoparticle formulae (AgNPs) were evaluated for their antidiabetic activity. Results and Discussion: The results showed a decrease in body fat, obesity, an improvement in lipid profiles, normalization of hyperglycemia, insulin resistance, and hyperinsulinemia, and an improvement in liver tissue structure and function. However, the results obtained from AgNPs for both extract and the pure gallic acid were better in most measured parameters. Additionally, the activity of both the crude extract of the plant and its AgNPs were evaluated against a number of gram-positive, gram-negative bacteria and fungi. Although the activity of the crude extract ranged from moderate to weak or even non-active, the AgNPs of the plant extract clearly enhanced the antimicrobial activity. AgNPs of the extract demonstrated remarkable activity, especially against the Gram-negative pathogens Proteus vulgaris (MIC 2.5 µg/ml) and Pseudomonas aeruginosa (MIC 5 µg/ml). Furthermore, a promising antimicrobial activity was shown against the Gram-positive pathogen Streptococcus mutants (MIC 1.25 µg/ml).

11.
Carbohydr Polym ; 260: 117834, 2021 May 15.
Article de Anglais | MEDLINE | ID: mdl-33712171

RÉSUMÉ

This study reports preparation and physicochemical characterization of natural antimicrobials (Origanum Syriacum essential oil (OSEO), shrimp chitosan nanoparticles (CSNPs)) and new imidazolium ionic liquid-supported Zn(II)Salen. These antimicrobials were separately or co-encapsulated by CSNPs to fabricate novel antimicrobial nanoplatforms "NPFs" (OSEO-loaded CSNPs (NPF-1), Zn(II)Salen-loaded CSNPs (NPF-2), and Zn(II)Salen@OSEO-loaded CSNPs (NPF-3)). The finding of loading, encapsulation, and antimicrobial release studies confirm the suitability of CSNPs for nanoencapsulation of Zn(II)Salen and OSEO. All NPFs can significantly suppress the growth of microbial species with performances dependent upon the microbial strain and nanoplatform concentration. The susceptibility of microbes toward new antimicrobials was as follows; Gram-positive bacteria > Gram-negative bacteria > fungi. The amazing physicochemical features of new nanoplatforms and their bioactive ingredients (Zn(II)Salen, OSEO, and CSNPs) signify the importance of our designs for developing a new generation of nanopharmaceuticals supported both natural products and biogenic ionic metal cofactors, targeting the multidrug resistant (MDR) pathogens.


Sujet(s)
Anti-infectieux/composition chimique , Chitosane/composition chimique , Éthylènediamines/composition chimique , Nanoparticules/composition chimique , Huile essentielle/composition chimique , Anti-infectieux/métabolisme , Anti-infectieux/pharmacologie , Vecteurs de médicaments/composition chimique , Libération de médicament , Éthylènediamines/métabolisme , Champignons/effets des médicaments et des substances chimiques , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Bactéries à Gram positif/effets des médicaments et des substances chimiques , Imidazoles/composition chimique , Huile essentielle/métabolisme , Origanum/métabolisme , Taille de particule , Température , Zinc/composition chimique
12.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-33535550

RÉSUMÉ

Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax's pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound's pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound's cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.

13.
Pharmaceutics ; 13(2)2021 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-33525642

RÉSUMÉ

The aim of the current study is to establish a comprehensive experimental design for the screening and optimization of Atorvastatin-loaded nanostructured lipid carriers (AT-NLCs). Initially, combined D-optimal screening design was applied to find the most significant factors affecting AT-NLCs properties. The studied variables included mixtures of solid and liquid lipids, the solid/liquid lipid ratio, surfactant type and concentration, homogenization speed as well as sonication time. Then, the variables homogenization speed (A), the ratio of solid lipid/liquid lipid (B), and concentration of the surfactant (C) were optimized using a central composite design. Particle size, polydispersity index, zeta potential, and entrapment efficiency were chosen as dependent responses. The optimized AT-NLCs demonstrated a nanometric size (83.80 ± 1.13 nm), Polydispersity Index (0.38 ± 0.02), surface charge (-29.65 ± 0.65 mV), and high drug incorporation (93.1 ± 0.04%). Fourier Transform Infrared Spectroscopy (FTIR) analysis showed no chemical interaction between Atorvastatin and the lipid mixture. Differential Scanning Calorimetry (DSC) analysis of the AT-NLCs suggested the transformation of Atorvastatin crystal into an amorphous state. Administration of the optimized AT-NLCs led to a significant reduction (p < 0.001) in serum levels of rats' total cholesterol, triglycerides, and low-density lipoproteins. This change was histologically validated by reducing the relevant steatosis of the liver.

14.
Pharmaceutics ; 12(12)2020 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-33260755

RÉSUMÉ

INTRODUCTION: Several recent studies have shown that the role of cyclooxygenase 2 (COX-2) in carcinogenesis has become more evident. It affects angiogenesis, apoptosis, and invasion, and plays a key role in the production of carcinogens. It has also been reported that COX-2 inhibitors such as celecoxib (CLX) might play an effective role in preventing cancer formation and progression. Formulation of CLX into nanovesicles is a promising technique to improve its bioavailability and anticancer efficacy. AIM: The aim of this study is to optimize and evaluate the anticancer efficacy of CLX-loaded in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles in-vitro and determine its pharmacokinetic parameters in-vivo. METHODS: The novel provesicular powders were prepared by the slurry method and optimized by 32 full factorial design using the desirability function. RESULTS: Small mean particle size was achieved by the formed vesicles with value of 351.7 ± 1.76 nm and high entrapment efficacy of CLX in the formed vesicles of 97.53 ± 0.84%. Solid state characterization of the optimized formulation showed that the powder was free flowing, showed no incompatibilities between drug and excipients and showed smooth texture. The cytotoxic study of the optimized formula on HCT-116, HepG-2, A-549, PC-3 and MCF-7 cell lines showed significant increase in activity of CLX compared to its free form. The pharmacokinetic study on albino rabbits after oral administration showed significant increase in the area under the curve (AUC)0-24 h and significantly higher oral relative bioavailability of the optimized formulation compared to Celebrex® 100 mg market product (p < 0.05). CONCLUSION: All findings of this study suggest the potential improvement of efficacy and bioavailability of CLX when formulated in the form of in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles for its repositioned use as an anticancer agent.

15.
Pharmaceutics ; 12(5)2020 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-32365695

RÉSUMÉ

Drug absorption from the gastrointestinal tract (GIT) is one of the major problems affecting the bioavailability of orally absorbed drugs. This work aims to enhance Fexofenadine HCl oral bioavailability in vivo, the drug used for allergic rhinitis. In this study, novel spray-dried lactose-based enhanced in situ forming vesicles were prepared using different absorption enhancer by the slurry method. Full factorial design was used to obtain an optimized formulation, while central composite design was used to develop economic, environment-friendly analysis method of Fexofenadine HCl in plasma of rabbits. The optimized formulation containing Capryol 90 as absorption enhancer has a mean particle size 202.6 ± 3.9 nm and zeta potential -31.6 ± 0.9 mV. It achieved high entrapment efficiency of the drug 73.7 ± 1.7% and rapid Q3h release reaches 71.5 ± 2.7%. The design-optimized HPLC assay method in rabbit plasma could separate Fexofenadine HCl from endogenous plasma compounds in less than 3.7 min. The pharmacokinetic study and the pharmacological effect of the fexofenadine-loaded optimized formulation showed a significant increase in blood concentration and significantly higher activity against compound 48/80 induced systemic anaphylaxis-like reactions in mice. Therefore, enhanced in situ forming vesicles were effective nanocarriers for the entrapment and delivery of Fexofenadine HCl.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...