Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 81
Filtrer
1.
JACC Adv ; 3(8): 101101, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39105119

RÉSUMÉ

Background: Peak oxygen consumption and oxygen pulse along with their respective percent predicted measures are gold standards of exercise capacity. To date, no studies have investigated the relationship between percent predicted peak oxygen pulse (%PredO2P) and ventricular-vascular response (VVR) and the association of %PredO2P with all-cause mortality in heart failure with preserved ejection fraction (HFpEF) patients. Objectives: The authors investigated the association between: 1) CPET measures of %PredO2P and VVR; and 2) %PredO2P and all-cause mortality in HFpEF patients. Methods: Our cohort of 154 HFpEF patients underwent invasive CPET and were grouped into %PredO2P tertiles. The association between percent predicted Fick components and markers of VVR (ie, proportionate pulse pressure, effective arterial elastance) was determined with correlation analysis. The Cox proportional hazards model was used to identify predictors of mortality. Results: The participants' mean age was 57 ± 15 years. Higher %PredO2P correlated with higher exercise capacity. In terms of VVR, higher %PredO2P correlated with a lower pressure for a given preload (effective arterial elastance r = -0.45, P < 0.001 and proportionate pulse pressure r = -0.22, P = 0.008). %PredO2P distinguished normal and abnormal percent predicted peak stroke volume and correlated positively with %PredVO2 (r = 0.61, P < 0.001). Participants had a median follow-up time of 5.6 years and 15% death. Adjusted for age and body mass index, there was a 5% relative reduction in mortality (HR: 0.95, 95% CI: 0.92-0.98, P = 0.003) for every percent increase in %PredO2P. Conclusions: In HFpEF, %PredO2P is a VVR marker that can stratify invasive parameters such as percent predicted peak stroke volume. %PredO2P is an independent prognostic marker for all-cause mortality and those with higher %PredO2P exhibited longer survival.

2.
J Med Internet Res ; 26: e56676, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38870519

RÉSUMÉ

BACKGROUND: Resting heart rate (HR) and routine physical activity are associated with cardiorespiratory fitness levels. Commercial smartwatches permit remote HR monitoring and step count recording in real-world settings over long periods of time, but the relationship between smartwatch-measured HR and daily steps to cardiorespiratory fitness remains incompletely characterized in the community. OBJECTIVE: This study aimed to examine the association of nonactive HR and daily steps measured by a smartwatch with a multidimensional fitness assessment via cardiopulmonary exercise testing (CPET) among participants in the electronic Framingham Heart Study. METHODS: Electronic Framingham Heart Study participants were enrolled in a research examination (2016-2019) and provided with a study smartwatch that collected longitudinal HR and physical activity data for up to 3 years. At the same examination, the participants underwent CPET on a cycle ergometer. Multivariable linear models were used to test the association of CPET indices with nonactive HR and daily steps from the smartwatch. RESULTS: We included 662 participants (mean age 53, SD 9 years; n=391, 59% women, n=599, 91% White; mean nonactive HR 73, SD 6 beats per minute) with a median of 1836 (IQR 889-3559) HR records and a median of 128 (IQR 65-227) watch-wearing days for each individual. In multivariable-adjusted models, lower nonactive HR and higher daily steps were associated with higher peak oxygen uptake (VO2), % predicted peak VO2, and VO2 at the ventilatory anaerobic threshold, with false discovery rate (FDR)-adjusted P values <.001 for all. Reductions of 2.4 beats per minute in nonactive HR, or increases of nearly 1000 daily steps, corresponded to a 1.3 mL/kg/min higher peak VO2. In addition, ventilatory efficiency (VE/VCO2; FDR-adjusted P=.009), % predicted maximum HR (FDR-adjusted P<.001), and systolic blood pressure-to-workload slope (FDR-adjusted P=.01) were associated with nonactive HR but not associated with daily steps. CONCLUSIONS: Our findings suggest that smartwatch-based assessments are associated with a broad array of cardiorespiratory fitness responses in the community, including measures of global fitness (peak VO2), ventilatory efficiency, and blood pressure response to exercise. Metrics captured by wearable devices offer a valuable opportunity to use extensive data on health factors and behaviors to provide a window into individual cardiovascular fitness levels.


Sujet(s)
Capacité cardiorespiratoire , Exercice physique , Rythme cardiaque , Humains , Rythme cardiaque/physiologie , Femelle , Mâle , Capacité cardiorespiratoire/physiologie , Adulte d'âge moyen , Exercice physique/physiologie , Études de cohortes , Adulte , Épreuve d'effort/méthodes , Épreuve d'effort/instrumentation , Dispositifs électroniques portables
3.
Nat Med ; 30(6): 1711-1721, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38834850

RÉSUMÉ

Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.


Sujet(s)
Capacité cardiorespiratoire , Protéomique , Humains , Protéomique/méthodes , Mâle , Femelle , Adulte d'âge moyen , Facteurs de risque , Adulte , Sujet âgé , Études de cohortes , Exercice physique/physiologie
4.
ESC Heart Fail ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38943268

RÉSUMÉ

AIMS: New tools are needed to identify heart failure (HF) risk earlier in its course. We evaluated the association of multidimensional cardiopulmonary exercise testing (CPET) phenotypes with subclinical risk markers and predicted long-term HF risk in a large community-based cohort. METHODS AND RESULTS: We studied 2532 Framingham Heart Study participants [age 53 ± 9 years, 52% women, body mass index (BMI) 28.0 ± 5.3 kg/m2, peak oxygen uptake (VO2) 21.1 ± 5.9 kg/m2 in women, 26.4 ± 6.7 kg/m2 in men] who underwent maximum effort CPET and were not taking atrioventricular nodal blocking agents. Higher peak VO2 was associated with a lower estimated HF risk score (Spearman correlation r: -0.60 in men and -0.55 in women, P < 0.0001), with an observed overlap of estimated risk across peak VO2 categories. Hierarchical clustering of 26 separate CPET phenotypes (values residualized on age, sex, and BMI to provide uniformity across these variables) identified three clusters with distinct exercise physiologies: Cluster 1-impaired oxygen kinetics; Cluster 2-impaired vascular; and Cluster 3-favourable exercise response. These clusters were similar in age, sex distribution, and BMI but displayed distinct associations with relevant subclinical phenotypes [Cluster 1-higher subcutaneous and visceral fat and lower pulmonary function; Cluster 2-higher carotid-femoral pulse wave velocity (CFPWV); and Cluster 3-lower CFPWV, C-reactive protein, fat volumes, and higher lung function; all false discovery rate < 5%]. Cluster membership provided incremental variance explained (adjusted R2 increment of 0.10 in women and men, P < 0.0001 for both) when compared with peak VO2 alone in association with predicted HF risk. CONCLUSIONS: Integrated CPET response patterns identify physiologically relevant profiles with distinct associations to subclinical phenotypes that are largely independent of standard risk factor-based assessment, which may suggest alternate pathways for prevention.

5.
Circ Heart Fail ; 17(5): e011366, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38742409

RÉSUMÉ

BACKGROUND: Although heart failure with preserved ejection fraction (HFpEF) has become the predominant heart failure subtype, it remains clinically under-recognized. HFpEF diagnosis is particularly challenging in the setting of obesity given the limitations of natriuretic peptides and resting echocardiography. We examined invasive and noninvasive HFpEF diagnostic criteria among individuals with obesity and dyspnea without known cardiovascular disease to determine the prevalence of hemodynamic HFpEF in the community. METHODS: Research volunteers with dyspnea and obesity underwent resting echocardiography; participants with possible pulmonary hypertension qualified for invasive cardiopulmonary exercise testing. HFpEF was defined using rest or exercise pulmonary capillary wedge pressure criteria (≥15 mm Hg or Δpulmonary capillary wedge pressure/Δcardiac output slope, >2.0 mm Hg·L-1·min-1). RESULTS: Among n=78 participants (age, 53±13 years; 65% women; body mass index, 37.3±6.8 kg/m2), 40 (51%) met echocardiographic criteria to undergo invasive cardiopulmonary exercise testing. In total, 24 participants (60% among the cardiopulmonary exercise testing group, 31% among the total sample) were diagnosed with HFpEF by rest or exercise pulmonary capillary wedge pressure (n=12) or exercise criteria (n=12). There were no differences in NT-proBNP (N-terminal pro-B-type natriuretic peptide; 79 [62-104] versus 73 [57-121] pg/mL) or resting echocardiography (mitral E/e' ratio, 9.1±3.1 versus 8.0±2.7) among those with versus without HFpEF (P>0.05 for all). Distributions of HFpEF diagnostic scores were similar, with the majority classified as intermediate risk (100% versus 93.75% [H2FPEF] and 87.5% versus 68.75% [HFA-PEFF (Heart Failure Association Pretest assessment, echocardiography and natriuretic peptide, functional testing, and final etiology)] in those with versus without HFpEF). CONCLUSIONS: Among adults with obesity and dyspnea without known cardiovascular disease, at least a third had clinically unrecognized HFpEF uncovered on invasive cardiopulmonary exercise testing. Clinical, biomarker, resting echocardiography, and diagnostic scores were similar among those with and without HFpEF. These results suggest clinical underdiagnosis of HFpEF among individuals with obesity and dyspnea and highlight limitations of noninvasive testing in the identification of HFpEF.


Sujet(s)
Dyspnée , Épreuve d'effort , Défaillance cardiaque , Obésité , Débit systolique , Humains , Femelle , Défaillance cardiaque/physiopathologie , Défaillance cardiaque/diagnostic , Mâle , Adulte d'âge moyen , Débit systolique/physiologie , Dyspnée/physiopathologie , Obésité/physiopathologie , Obésité/complications , Obésité/épidémiologie , Obésité/diagnostic , Sujet âgé , Échocardiographie , Adulte , Peptide natriurétique cérébral/sang , Fragments peptidiques/sang , Pression artérielle pulmonaire d'occlusion/physiologie , Fonction ventriculaire gauche/physiologie , Marqueurs biologiques/sang , Prévalence
6.
J Am Heart Assoc ; 13(9): e032944, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38700001

RÉSUMÉ

BACKGROUND: The relation of cardiorespiratory fitness (CRF) to lifestyle behaviors and factors linked with cardiovascular health remains unclear. We aimed to understand how the American Heart Association's Life's Essential 8 (LE8) score (and its changes over time) relate to CRF and complementary exercise measures in community-dwelling adults. METHODS AND RESULTS: Framingham Heart Study (FHS) participants underwent maximum effort cardiopulmonary exercise testing for direct quantification of peak oxygen uptake (V̇O2). A 100-point LE8 score was constructed as the average across 8 factors: diet, physical activity, nicotine exposure, sleep, body mass index, lipids, blood glucose, and blood pressure. We related total LE8 score, score components, and change in LE8 score over 8 years with peak V̇O2 (log-transformed) and complementary CRF measures. In age- and sex-adjusted linear models (N=1838, age 54±9 years, 54% women, LE8 score 76±12), a higher LE8 score was associated favorably with peak V̇O2, ventilatory efficiency, resting heart rate, and blood pressure response to exercise (all P<0.0001). A clinically meaningful 5-point higher LE8 score was associated with a 6.0% greater peak V̇O2 (≈1.4 mL/kg per minute at sample mean). All LE8 components were significantly associated with peak V̇O2 in models adjusted for age and sex, but blood lipids, diet, and sleep health were no longer statistically significant after adjustment for all LE8 components. Over an ≈8-year interval, a 5-unit increase in LE8 score was associated with a 3.7% higher peak V̇O2 (P<0.0001). CONCLUSIONS: Higher LE8 score and improvement in LE8 over time was associated with greater CRF, highlighting the importance of the LE8 factors in maintaining CRF.


Sujet(s)
Capacité cardiorespiratoire , Consommation d'oxygène , Humains , Femelle , Mâle , Adulte d'âge moyen , Consommation d'oxygène/physiologie , Sujet âgé , Épreuve d'effort , Exercice physique/physiologie , Pression sanguine/physiologie , Maladies cardiovasculaires/physiopathologie , Maladies cardiovasculaires/épidémiologie , Adulte , Sommeil/physiologie , Indice de masse corporelle , État de santé , Vie autonome , Lipides/sang , Facteurs temps , Glycémie/métabolisme , Mode de vie sain , Rythme cardiaque/physiologie , Comportement de réduction des risques
7.
Cell Rep Med ; 5(5): 101548, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38703763

RÉSUMÉ

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.


Sujet(s)
Indice de masse corporelle , Prise de poids , Humains , Mâle , Femelle , Adulte , Obésité/métabolisme , Obésité/génétique , Jeune adulte , Métabolomique , Métabolisme énergétique , Protéomique/méthodes , Microbiome gastro-intestinal , Métabolome
8.
medRxiv ; 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38645000

RÉSUMÉ

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.

9.
Circ Res ; 135(1): 138-154, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38662804

RÉSUMÉ

BACKGROUND: The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS: We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS: Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.14-1.38]; P=6.38×10-6; hazard ratio expressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS: Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.


Sujet(s)
Facteurs de risque cardiométabolique , Maladies cardiovasculaires , Exposition environnementale , Protéomique , Humains , Protéomique/méthodes , Femelle , Mâle , Exposition environnementale/effets indésirables , Adulte , Adulte d'âge moyen , Maladies cardiovasculaires/sang , Maladies cardiovasculaires/étiologie , Maladies cardiovasculaires/épidémiologie , Études prospectives , Jeune adulte
10.
medRxiv ; 2024 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-38352394

RÉSUMÉ

Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.

11.
Circ Genom Precis Med ; 17(1): e004192, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38323454

RÉSUMÉ

BACKGROUND: The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS: We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS: In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS: A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.


Sujet(s)
Diabète de type 2 , Protéomique , Humains , Femelle , Jeune adulte , Adulte , Mâle , Tissu adipeux , Inflammation , Marqueurs biologiques/métabolisme
12.
J Card Fail ; 30(1): 39-47, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37467924

RÉSUMÉ

BACKGROUND: Whether systemic oxygen levels (SaO2) during exercise can provide a window into invasively derived exercise hemodynamic profiles in patients with undifferentiated dyspnea on exertion is unknown. METHODS: We performed cardiopulmonary exercise testing with invasive hemodynamic monitoring and arterial blood gas sampling in individuals referred for dyspnea on exertion. Receiver operator analysis was performed to distinguish heart failure with preserved ejection fraction from pulmonary arterial hypertension. RESULTS: Among 253 patients (mean ± SD, age 63 ± 14 years, 55% female, arterial O2 [PaO2] 87 ± 14 mmHg, SaO2 96% ± 4%, resting pulmonary capillary wedge pressure [PCWP] 18 ± 4mmHg, and pulmonary vascular resistance [PVR] 2.7 ± 1.2 Wood units), there was no exercise PCWP threshold, measured up to 49 mmHg, above which hypoxemia was consistently observed. Exercise PaO2 was not correlated with exercise PCWP (rho = 0.04; P = 0.51) but did relate to exercise PVR (rho = -0.46; P < 0.001). Exercise PaO2 and SaO2 levels distinguished left-heart-predominant dysfunction from pulmonary-vascular-predominant dysfunction with an area under the curve of 0.89 and 0.89, respectively. CONCLUSION: Systemic O2 levels during exercise distinguish relative pre- and post-capillary pulmonary hemodynamic abnormalities in patients with undifferentiated dyspnea. Hypoxemia during upright exercise should not be attributed to isolated elevation in left heart filling pressures and should prompt consideration of pulmonary vascular dysfunction.


Sujet(s)
Défaillance cardiaque , Oxygène , Humains , Femelle , Adulte d'âge moyen , Sujet âgé , Mâle , Effort physique , Hémodynamique , Pression artérielle pulmonaire d'occlusion , Dyspnée/diagnostic , Hypoxie , Épreuve d'effort , Débit systolique
14.
BMC Med ; 21(1): 443, 2023 11 16.
Article de Anglais | MEDLINE | ID: mdl-37968697

RÉSUMÉ

BACKGROUND: Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecular basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD. METHODS: Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine, and liquor on average of 19 years in 2428 Framingham Heart Study Offspring participants (mean age 56 years, 52% women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-transformed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident CVD (myocardial infarction, coronary heart disease, stroke, and heart failure). RESULTS: We identified 60 metabolites associated with cumulative average alcohol consumption (p < 0.05/211 ≈ 0.00024). For example, 1 g/day increase of alcohol consumption was associated with higher levels of cholesteryl esters (e.g., CE 16:1, beta = 0.023 ± 0.002, p = 6.3e - 45) and phosphatidylcholine (e.g., PC 32:1, beta = 0.021 ± 0.002, p = 3.1e - 38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differential CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11 (95% CI = [1.02, 1.21], p = 0.02) vs 0.88 (95% CI = [0.78, 0.98], p = 0.02). CONCLUSIONS: We identified 60 long-term alcohol consumption-associated metabolites. The association analysis with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.


Sujet(s)
Maladies cardiovasculaires , Maladie coronarienne , Humains , Femelle , Adulte d'âge moyen , Mâle , Maladies cardiovasculaires/épidémiologie , Maladies cardiovasculaires/étiologie , Études prospectives , Consommation d'alcool/épidémiologie , Consommation d'alcool/effets indésirables , Maladie coronarienne/complications , Régime alimentaire , Facteurs de risque
15.
Nat Commun ; 14(1): 7557, 2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-37985769

RÉSUMÉ

Systemic inflammation has been implicated in the pathobiology of heart failure with preserved ejection fraction (HFpEF). Here, we examine the association of upstream mediators of inflammation as ascertained by fatty-acid derived eicosanoid and eicosanoid-related metabolites with HFpEF status and exercise manifestations of HFpEF. Among 510 participants with chronic dyspnea and preserved LVEF who underwent invasive cardiopulmonary exercise testing, we find that 70 of 890 eicosanoid and related metabolites are associated with HFpEF status, including 17 named and 53 putative eicosanoids (FDR q-value < 0.1). Prostaglandin (15R-PGF2α, 11ß-dhk-PGF2α) and linoleic acid derivatives (12,13 EpOME) are associated with greater odds of HFpEF, while epoxides (8(9)-EpETE), docosanoids (13,14-DiHDPA), and oxylipins (12-OPDA) are associated with lower odds of HFpEF. Among 70 metabolites, 18 are associated with future development of heart failure in the community. Pro- and anti-inflammatory eicosanoid and related metabolites may contribute to the pathogenesis of HFpEF and serve as potential targets for intervention.


Sujet(s)
Défaillance cardiaque , Humains , Débit systolique , Dyspnée , Épreuve d'effort , Éicosanoïdes , Tolérance à l'effort
16.
J Am Heart Assoc ; 12(21): e029980, 2023 11 07.
Article de Anglais | MEDLINE | ID: mdl-37889181

RÉSUMÉ

BACKGROUND: While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS: We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS: The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.


Sujet(s)
Défaillance cardiaque , Humains , Femelle , Mâle , Débit systolique/physiologie , Projets pilotes , Protéomique , Phénotype , Oxygène/métabolisme , Épreuve d'effort/méthodes , Tolérance à l'effort/physiologie
17.
J Am Heart Assoc ; 12(21): e029619, 2023 11 07.
Article de Anglais | MEDLINE | ID: mdl-37850464

RÉSUMÉ

Background During exercise, a healthy arterial system facilitates increased blood flow and distributes it effectively to essential organs. Accordingly, we sought to understand how arterial stiffening might impair cardiorespiratory fitness in community-dwelling individuals. Methods and Results Arterial tonometry and maximum effort cardiopulmonary exercise testing were performed on Framingham Heart Study participants (N=2898, age 54±9 years, 53% women, body mass index 28.1±5.3 kg/m2). We related 5 arterial stiffness measures (carotid-femoral pulse wave velocity [CFPWV]: a measure of aortic wall stiffness; central pulse pressure, forward wave amplitude, characteristic impedance: measures of pressure pulsatility; and augmentation index: a measure of relative wave reflection) to multidimensional exercise responses using linear models adjusted for age, sex, resting heart rate, habitual physical activity, and clinical risk factors. Greater CFPWV, augmentation index, and characteristic impedance were associated with lower peak oxygen uptake (VO2; all P<0.0001). We observed consistency of associations of CFPWV with peak oxygen uptake across age, sex, and cardiovascular risk profile (interaction P>0.05). However, the CFPWV-peak oxygen uptake relation was attenuated in individuals with obesity (P=0.002 for obesity*CFPWV interaction). Higher CPFWV, augmentation index, and characteristic impedance were also related to cardiopulmonary exercise testing measures reflecting adverse O2 kinetics and lower stroke volume and peripheral O2 extraction but not to ventilatory efficiency, a prognostic measure of right ventricular-pulmonary vascular performance. Conclusions Our findings delineate relations of arterial stiffness and cardiorespiratory fitness in community-dwelling individuals. Future studies are warranted to evaluate whether the physiological measures implicated here may represent potential targets for improving cardiorespiratory fitness in the general population.


Sujet(s)
Capacité cardiorespiratoire , Rigidité vasculaire , Humains , Femelle , Adulte d'âge moyen , Mâle , Rigidité vasculaire/physiologie , Analyse de l'onde de pouls , Obésité , Oxygène
18.
Aging Cell ; 22(11): e13978, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37731195

RÉSUMÉ

While frailty is a prominent risk factor in an aging population, the underlying biology of frailty is incompletely described. Here, we integrate 979 circulating proteins across a wide range of physiologies with 12 measures of frailty in a prospective discovery cohort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation. Our aim was to characterize the proteomic architecture of frailty in a highly susceptible population and study its relation to clinical outcome and systems-wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic signatures (specifically of physical function) were related to post-intervention outcome in AS, specifying pathways of innate immunity, cell growth/senescence, fibrosis/metabolism, and a host of proteins not widely described in human aging. In published cohorts, the "frailty proteome" displayed heterogeneous trajectories across age (20-100 years, age only explaining a small fraction of variance) and were associated with cardiac and non-cardiac phenotypes and outcomes across two broad validation cohorts (N > 35,000) over ≈2-3 decades. These findings suggest the importance of precision biomarkers of underlying multi-organ health status in age-related morbidity and frailty.


Sujet(s)
Sténose aortique , Maladies cardiovasculaires , Fragilité , Remplacement valvulaire aortique par cathéter , Humains , Sujet âgé , Jeune adulte , Adulte , Adulte d'âge moyen , Sujet âgé de 80 ans ou plus , Protéomique , Facteurs de risque , Valve aortique
19.
Circ Heart Fail ; 16(11): e010618, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37703087

RÉSUMÉ

BACKGROUND: Obesity and adiposity are associated with an increased risk of heart failure with preserved ejection fraction (HFpEF); yet, specific underlying mechanisms remain unclear. We sought to examine the association of obesity-related biomarkers including adipokines (leptin, resistin, adiponectin), inflammatory markers (CRP [C-reactive protein], IL-6 [interleukin-6]), and insulin resistance (HOMA-IR) with HFpEF status, exercise capacity, and cardiovascular outcomes. METHODS: We studied 509 consecutive patients with left ventricular ejection fraction ≥50% and chronic dyspnea, who underwent clinically indicated cardiopulmonary exercise test with invasive hemodynamic monitoring between 2006 and 2017. We defined HFpEF based on the presence of elevated left ventricular filling pressures at rest or during exercise. Fasting blood samples collected at the time of the cardiopulmonary exercise test were used to assay obesity-related biomarkers. We examined the association of log-transformed biomarkers with HFpEF status and exercise traits using multivariable-adjusted logistic regression models. RESULTS: We observed associations of obesity-related biomarkers with measures of impaired exercise capacity including peak VO2 (P≤0.002 for all biomarkers). The largest effect size was seen with leptin, where a 1-SD higher leptin was associated with a 2.35 mL/kg per min lower peak VO2 (ß, -2.35±0.19; P<0.001). In addition, specific biomarkers were associated with distinct measures of exercise reserve including blood pressure (homeostatic model assessment of insulin resistance, leptin, adiponectin; P≤0.002 for all), and chronotropic response (CRP, IL-6, homeostatic model assessment of insulin resistance, leptin, and resistin; P<0.05 for all). Our findings suggest that among the obesity-related biomarkers studied, higher levels of leptin and CRP are independently associated with increased odds of HFpEF, with odds ratios of 1.36 (95% CI, 1.09-1.70) and 1.25 (95% CI, 1.03-1.52), respectively. CONCLUSIONS: Specific obesity-related pathways including inflammation, adipokine signaling, and insulin resistance may underlie the association of obesity with HFpEF and exercise intolerance.


Sujet(s)
Défaillance cardiaque , Insulinorésistance , Humains , Défaillance cardiaque/diagnostic , Débit systolique/physiologie , Leptine , Résistine , Adiponectine , Fonction ventriculaire gauche/physiologie , Interleukine-6 , Obésité/complications , Marqueurs biologiques , Épreuve d'effort , Tolérance à l'effort/physiologie
20.
medRxiv ; 2023 May 29.
Article de Anglais | MEDLINE | ID: mdl-37398015

RÉSUMÉ

Background: Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecular basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD. Methods: Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine and liquor on average of 19 years in 2,428 Framingham Heart Study Offspring participants (mean age 56 years, 52% women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-transformed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident CVD (myocardial infarction, coronary heart disease, stroke, and heart failure). Results: We identified 60 metabolites associated with cumulative average alcohol consumption (p<0.05/211≈0.00024). For example, one g/day increase of alcohol consumption was associated with higher levels of cholesteryl esters (e.g., CE 16:1, beta=0.023±0.002, p=6.3e-45) and phosphatidylcholine (e.g., PC 32:1, beta=0.021±0.002, p=3.1e-38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differential CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11(95% CI=[1.02, 1.21],p=0.02) vs 0.88 (95% CI=[0.78, 0.98], p=0.02). Summary: We identified 60 long-term alcohol consumption-associated metabolites. The association analysis with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE