Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Antib Ther ; 7(3): 256-265, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39262441

RÉSUMÉ

Recombinant antibodies (rAbs) have emerged as a promising solution to tackle antigen specificity, enhancement of immunogenic potential and versatile functionalization to treat human diseases. The development of single chain variable fragments has helped accelerate treatment in cancers and viral infections, due to their favorable pharmacokinetics and human compatibility. However, designing rAbs is traditionally viewed as a genetic engineering problem, with phage display and cell free systems playing a major role in sequence selection for gene synthesis. The process of antibody engineering involves complex and time-consuming laboratory techniques, which demand substantial resources and expertise. The success rate of obtaining desired antibody candidates through experimental approaches can be modest, necessitating iterative cycles of selection and optimization. With ongoing advancements in technology, in silico design of diverse antibody libraries, screening and identification of potential candidates for in vitro validation can be accelerated. To meet this need, we have developed rAbDesFlow, a unified computational workflow for recombinant antibody engineering with open-source programs and tools for ease of implementation. The workflow encompasses five computational modules to perform antigen selection, antibody library generation, antigen and antibody structure modeling, antigen-antibody interaction modeling, structure analysis, and consensus ranking of potential antibody sequences for synthesis and experimental validation. The proposed workflow has been demonstrated through design of rAbs for the ovarian cancer antigen Mucin-16 (CA-125). This approach can serve as a blueprint for designing similar engineered molecules targeting other biomarkers, allowing for a simplified adaptation to different cancer types or disease-specific antigens.

2.
Mol Biol Res Commun ; 9(4): 155-167, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-33344662

RÉSUMÉ

Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance. Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Proline (Erg11p_SER457PRO) are three fluconazole-resistant suspected mutations reported in clinical isolates of C. albicans. Therefore, our study aims to investigate the role of these suspected mutations in fluconazole resistance using in-silico methods. Molecular dynamics simulation (MDS) analysis of apo-protein for 25ns (nanosecond) showed that suspected mutant proteins underwent slight conformational changes in the tertiary structure. Molecular docking with fluconazole followed by binding free energy analysis showed reduced non-bonded interactions with loss of heme interaction and the least binding affinity for Erg11p_SER457PRO mutation. MDS of suspected mutant proteins-fluconazole complexes for 50ns revealed that Erg11p_SER457PRO and Erg11p_LEU321PHE have clear differences in the interaction pattern and loss or reduced heme interaction compared to wild type Erg11p-fluconazole complex. MDS and binding free energy analysis of Erg11p_SER457PRO-fluconazole complex showed the least binding similar to verified mutation Erg11p_TYR447HIS-fluconazole complex. Taken together, our study concludes that suspected mutation Erg11p_THR285ALA may not have any role whereas Erg11p_LEU321PHE could have a moderate role. However, Erg11p_SER457PRO mutation has a strong possibility to play an active role in fluconazole resistance of C. albicans.

3.
Oncotarget ; 7(27): 42353-42373, 2016 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-27304668

RÉSUMÉ

Multidrug resistance (MDR) is considered to be the major contributor to failure of chemotherapy in oral squamous cell carcinoma (SCC). This study was aimed to explore the effects and mechanisms of glaucarubinone (GLU), one of the major quassinoids from Simarouba glauca DC, in potentiating cytotoxicity of paclitaxel (PTX), an anticancer drug in KB cells. Our data showed that the administration of GLU pre-treatment significantly enhanced PTX anti-proliferative effect in ABCB1 over-expressing KB cells. The Rh 123 drug efflux studies revealed that there was a significant transport function inhibition by GLU-PTX treatment. Interestingly, it was also found that this enhanced anticancer efficacy of GLU was associated with PTX-induced cell arrest in the G2/M phase of cell cycle. Further, the combined treatment of GLU-PTX had significant decrease in the expression levels of P-gp, MRPs, and BCRP in resistant KB cells at both mRNA and protein levels. Furthermore, the combination treatments showed significant reactive oxygen species (ROS) production, chromatin condensation and reduced mitochondrial membrane potential in resistant KB cells. The results from DNA fragmentation analysis also demonstrated the GLU induced apoptosis in KB cells and its synergy with PTX. Importantly, GLU and/or PTX triggered apoptosis through the activation of pro-apoptotic proteins such as p53, Bax, and caspase-9. Our findings demonstrated for the first time that GLU causes cell death in human oral cancer cells via the ROS-dependent suppression of MDR transporters and p53-mediated activation of the intrinsic mitochondrial pathway of apoptosis. Additionally, the present study also focussed on investigation of the protective effect of GLU and combination drugs in human normal blood lymphocytes. Normal blood lymphocytes assay indicated that GLU is able to induce selective toxicity in cancer cells and in silico molecular docking studies support the choice of GLU as ABC inhibitor to enhance PTX efficacy. Thus, GLU has the potential to enhance the activity of PTX and hence can be a good alternate treatment strategy for the reversal of PTX resistance.


Sujet(s)
Transporteurs ABC/antagonistes et inhibiteurs , Apoptose , Résistance aux médicaments antinéoplasiques , Glaucarubine/analogues et dérivés , Paclitaxel/pharmacologie , Protéine p53 suppresseur de tumeur/métabolisme , Sous-famille B de transporteurs à cassette liant l'ATP/métabolisme , Transporteurs ABC/métabolisme , Carcinomes/métabolisme , Cycle cellulaire , Prolifération cellulaire , Survie cellulaire , Chromatine/composition chimique , Fragmentation de l'ADN , Multirésistance aux médicaments/effets des médicaments et des substances chimiques , Glaucarubine/pharmacologie , Humains , Cellules KB , Lymphocytes/métabolisme , Potentiel de membrane mitochondriale , Simulation de docking moléculaire , Tumeurs de la bouche/métabolisme , Espèces réactives de l'oxygène/métabolisme , Transduction du signal
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE