Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Rev Sci Instrum ; 88(8): 083701, 2017 Aug.
Article de Anglais | MEDLINE | ID: mdl-28863711

RÉSUMÉ

We present a method to measure contact angles of microscopic droplets with a conventional microscope that possesses a precision focus adjustment stage. The droplets are modeled as spherical caps that act as lenses. Their focal length is determined by measuring the distance from the substrate surface to the level where a sharp image of the aperture stop is observed. The lens diameter is found by edge detection of a microscope image of the microdroplets. The spherical cap model relates the focal length and diameter of such lenses to the contact angle of the used liquid with known refractive index. The measurement procedure was applied to condensed water droplets on a silicon substrate covered by its native oxide layer. The results are found to be in good agreement with conventional, goniometric sessile drop measurements of the advancing contact angle.

2.
Beilstein J Nanotechnol ; 7: 484-91, 2016.
Article de Anglais | MEDLINE | ID: mdl-27335739

RÉSUMÉ

Active microrheology is a valuable tool to determine viscoelastic properties of polymer networks. Observing the response of the beads to the excitation of a reference leads to dynamic and morphological information of the material. In this work we present an expansion of the well-known active two-point microrheology. By measuring the response of multiple particles in a viscoelastic medium in response to the excitation of a reference particle, we are able to determine the force propagation in the polymer network. For this purpose a lock-in technique is established that allows for extraction of the periodical motion of embedded beads. To exert a sinusoidal motion onto the reference bead an optical tweezers setup in combination with a microscope is used to investigate the motion of the response beads. From the lock-in data the so called transfer tensor can be calculated, which is a direct measure for the ability of the network to transmit mechanical forces. We also take a closer look at the influence of noise on lock-in measurements and state some simple rules for improving the signal-to-noise ratio.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...