Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Total Environ ; 784: 147394, 2021 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-34088029

RÉSUMÉ

A series of MnO2-Co3O4-CeO2 catalysts with different ceria loading (0.75, 1.26 and 1.88 Ce/Mn molar ratio) were synthesized by a co-precipitation technique and the catalytic activity was tested for selective catalytic reduction of NOx by C3H6 or NH3. The catalysts were characterized by various physicochemical techniques to examine the effect of ceria loading on the properties of catalysts, such as crystallinity of metal species, surface area, porosity, and acidity using physical adsorption analysis, SEM-EDX, H2-TPR, XRD, NH3-TPD and in-situ FTIR spectroscopy. Ceria loading had a significant effect on the reduction of NOx, with the catalyst having low amount of ceria loading (Ce/Mn = 0.75) showing excellent performance at low-temperature conditions, but the activity declined at higher temperature. The high ceria loading (Ce/Mn = 1.88) catalyst showed poor activity compared to the counterparts owing to the lower number of acid sites and the resulting lower adsorption capacity.

2.
Environ Sci Technol ; 54(19): 11753-11761, 2020 10 06.
Article de Anglais | MEDLINE | ID: mdl-32790302

RÉSUMÉ

The impact of formaldehyde (HCHO, formed in vehicle exhaust gases by incomplete combustion of fuel) on the performance of a commercial V2O5-WO3/TiO2 catalyst in NH3-SCR of NOx under dry conditions has been analyzed in detail by catalytic tests, in situ FTIR and transient studies using temporal analysis of products (TAP). HCHO reacts preferentially with NH3 to a formamide (HCONH2) surface intermediate. This deprives NH3 partly from its desired role as a reducing agent in the SCR and diminishes NO conversion and N2 selectivity. Between 250 and 400 °C, HCONH2 decomposes by dehydration (major pathway) and decarbonylation (minor pathway) to liberate toxic HCN and CO, respectively. HCN was proven to be oxidized by lattice oxygen of the catalyst to CO2 and NO, which enters the NH3-SCR reaction.


Sujet(s)
Ammoniac , Titane , Catalyse , Formaldéhyde
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...