Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biotechnol Adv ; : 108434, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39168355

RÉSUMÉ

Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching of these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures. Advanced process analytical technologies (PATs) are crucial for monitoring these parameters and the assessment of T cell differentiation during culture. In this review, we examine such critical process parameters and PATs, with an emphasis on their impact on enriching less-differentiated T cell population. We also discuss the limitations of current technologies and advocate for further efforts from the community to establish more stringent critical process parameters (CPPs) and develop more at-line/online PATs that are specific to T cell differentiation. These advancements will be essential to enable the manufacturing of more efficacious adoptive immunotherapy products.

2.
Stem Cells Transl Med ; 13(4): 387-398, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38321361

RÉSUMÉ

The transplantation of spinal cord progenitor cells (SCPCs) derived from human-induced pluripotent stem cells (iPSCs) has beneficial effects in treating spinal cord injury (SCI). However, the presence of residual undifferentiated iPSCs among their differentiated progeny poses a high risk as these cells can develop teratomas or other types of tumors post-transplantation. Despite the need to remove these residual undifferentiated iPSCs, no specific surface markers can identify them for subsequent removal. By profiling the size of SCPCs after a 10-day differentiation process, we found that the large-sized group contains significantly more cells expressing pluripotent markers. In this study, we used a sized-based, label-free separation using an inertial microfluidic-based device to remove tumor-risk cells. The device can reduce the number of undifferentiated cells from an SCPC population with high throughput (ie, >3 million cells/minute) without affecting cell viability and functions. The sorted cells were verified with immunofluorescence staining, flow cytometry analysis, and colony culture assay. We demonstrated the capabilities of our technology to reduce the percentage of OCT4-positive cells. Our technology has great potential for the "downstream processing" of cell manufacturing workflow, ensuring better quality and safety of transplanted cells.


Sujet(s)
Cellules souches pluripotentes induites , Cellules souches neurales , Traumatismes de la moelle épinière , Humains , Moelle spinale/anatomopathologie , Différenciation cellulaire/physiologie , Traumatismes de la moelle épinière/thérapie , Traumatismes de la moelle épinière/anatomopathologie
3.
Electrophoresis ; 42(21-22): 2375-2382, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-33765330

RÉSUMÉ

Reconstructing of cell architecture plays a vital role in tissue engineering. Recent developments of self-assembling of cells into three-dimensional (3D) matrix pattern using surface acoustic waves have paved a way for a better tissue engineering platform thanks to its unique properties such as nature of noninvasive and noncontact, high biocompatibility, low-power consumption, automation capability, and fast actuation. This article discloses a method to manipulate the orientation and curvature of 3D matrix pattern by redesigning the top wall of microfluidic chamber and the technique to create a 3D longitudinal pattern along preinserted polydimethylsiloxane (PDMS) rods. Experimental results showed a good agreement with model predictions. This research can actively contribute to the development of better organs-on-chips platforms with capability of controlling cell architecture and density. Meanwhile, the 3D longitudinal pattern is suitable for self-assembling of microvasculatures.


Sujet(s)
Microfluidique , Acoustique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE