Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Adv Healthc Mater ; 6(5)2017 Mar.
Article de Anglais | MEDLINE | ID: mdl-28081298

RÉSUMÉ

In a rat model of right free wall replacement, the transplantation of an engineered multilayered myocardial patch fabricated from a polycaprolactone membrane supporting a chitosan/heart matrix hydrogel induces significant muscular and vascular remodeling and results in a significantly higher right ventricular ejection fraction compared to use of a commercially available pericardium patch.


Sujet(s)
Chitosane , Hydrogels , Test de matériaux , Membrane artificielle , Myocarde , Péricarde , Animaux , Chitosane/composition chimique , Chitosane/pharmacologie , Modèles animaux de maladie humaine , Femelle , Hydrogels/composition chimique , Hydrogels/pharmacologie , Mâle , Polyesters/composition chimique , Polyesters/pharmacologie , Rats , Rat Sprague-Dawley
2.
Cell Biochem Biophys ; 74(4): 527-535, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27722948

RÉSUMÉ

The stiffness of myocardial tissue changes significantly at birth and during neonatal development, concurrent with significant changes in contractile and electrical maturation of cardiomyocytes. Previous studies by our group have shown that cardiomyocytes generate maximum contractile force when cultured on a substrate with a stiffness approximating native cardiac tissue. However, effects of substrate stiffness on the electrophysiology and ion currents in cardiomyocytes have not been fully characterized. In this study, neonatal rat ventricular myocytes were cultured on the surface of flat polyacrylamide hydrogels with elastic moduli ranging from 1 to 25 kPa. Using whole-cell patch clamping, action potentials and L-type calcium currents were recorded. Cardiomyocytes cultured on hydrogels with a 9 kPa elastic modulus, similar to that of native myocardium, had the longest action potential duration. Additionally, the voltage at maximum calcium flux significantly decreased in cardiomyocytes on hydrogels with an elastic modulus higher than 9 kPa, and the mean inactivation voltage decreased with increasing stiffness. Interestingly, the expression of the L-type calcium channel subunit α gene and channel localization did not change with stiffness. Substrate stiffness significantly affects action potential length and calcium flux in cultured neonatal rat cardiomyocytes in a manner that may be unrelated to calcium channel expression. These results may explain functional differences in cardiomyocytes resulting from changes in the elastic modulus of the extracellular matrix, as observed during embryonic development, in ischemic regions of the heart after myocardial infarction, and during dilated cardiomyopathy.


Sujet(s)
Potentiels d'action/physiologie , Myocytes cardiaques/physiologie , Résines acryliques/composition chimique , Animaux , Calcium/métabolisme , Canaux calciques de type L/génétique , Canaux calciques de type L/métabolisme , Cellules cultivées , Module d'élasticité , Hydrogels/composition chimique , Myocytes cardiaques/cytologie , Techniques de patch-clamp , Rats , Rat Sprague-Dawley , Réaction de polymérisation en chaine en temps réel , Spécificité du substrat
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE