Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 79
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Angew Chem Int Ed Engl ; : e202410081, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38923229

RÉSUMÉ

Design of various cycloaddition / annulation processes is one of the most intriguing challenges during all time in the development of the donor-acceptor (D-A) cyclopropanes chemistry. In this work, a new missing class of formal high-order [6+n]-cycloaddition and annulation processes of D-A cyclopropanes with cycloheptatriene systems has been designed and reported, to fill a significant gap in the chemistry of D-A cyclopropanes. The reactivity of methylated cycloheptatrienes from Me1 to Me5 as well as unsubstituted cycloheptatriene was study in detail under GaCl3 activation conditions, which makes it possible to efficiently generate gallium 1,2-zwitterionic complexes or 1,3-zwitterionic intermediates from starting D-A cyclopropanes, when other Lewis acids are ineffective and non-selective. New important examples of formal [6+2]-, [6+3]-, [6+4]-, [6+1]-, and [4+2]- cycloaddition and annulation reactions with cycloheptatrienes along with more complex processes were discovered. Cycloheptatriene itself also can successfully act as a hydride anion donor which allows ionic hydrogenation of D-A cyclopropanes to be performed under mild conditions. As a result, a number of efficient and highly diastereoselective protocols for the synthesis of seven-membered-based carbocycles has been developed.

2.
Molecules ; 29(12)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38930781

RÉSUMÉ

It is found that the reaction of dimethyl 2-phenylcyclopropane-1,1-dicarboxylate with 2 equivalents each of aromatic aldehydes and TaCl5 in 1,2-dichloroethane at 23 °C for 24 h after hydrolysis gives substituted 4-phenyl-3,4-dihydronaphtalene-2,2(1H)-dicarboxylates in good yield. This represents a new type of reactions between 2-arylcyclopropane-1,1-dicarboxylates and aromatic aldehydes, yielding chlorinated tetrahydronaphthalenes with a cis arrangement of the aryl and chlorine substituents in the cyclohexene moiety. A plausible reaction mechanism is proposed.

3.
J Am Chem Soc ; 146(19): 13666-13675, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38709144

RÉSUMÉ

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.

4.
ACS Infect Dis ; 10(6): 2127-2150, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38771206

RÉSUMÉ

Antibiotic resistance is one of the most serious global health threats. Therefore, there is a need to develop antimicrobial agents with new mechanisms of action. Targeting of bacterial cystathionine γ-lyase (bCSE), an enzyme essential for bacterial survival, is a promising approach to overcome antibiotic resistance. Here, we described a series of (heteroarylmethyl)benzoic acid derivatives and evaluated their ability to inhibit bCSE or its human ortholog hCSE using known bCSE inhibitor NL2 as a lead compound. Derivatives bearing the 6-bromoindole group proved to be the most active, with IC50 values in the midmicromolar range, and highly selective for bCSE over hCSE. Furthermore, none of these compounds showed significant toxicity to HEK293T cells. The obtained data were rationalized by ligand-based and structure-based molecular modeling analyses. The most active compounds were also found to be an effective adjunct to several widely used antibacterial agents against clinically relevant antibiotic-resistant strains of such bacteria as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most potent compounds, 3h and 3i, also showed a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. Finally, compound 3i manifested potentiating activity in pneumonia, sepsis, and infected-wound in vivo models.


Sujet(s)
Antibactériens , Cystathionine gamma-lyase , Antienzymes , Humains , Antibactériens/pharmacologie , Antibactériens/synthèse chimique , Antibactériens/composition chimique , Antienzymes/pharmacologie , Antienzymes/composition chimique , Antienzymes/synthèse chimique , Cystathionine gamma-lyase/antagonistes et inhibiteurs , Cystathionine gamma-lyase/métabolisme , Animaux , Tests de sensibilité microbienne , Modèles moléculaires , Cellules HEK293 , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/enzymologie , Benzoates/pharmacologie , Benzoates/composition chimique , Benzoates/synthèse chimique , Souris , Staphylococcus aureus/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Relation structure-activité
5.
Inorg Chem ; 63(23): 10527-10541, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38813621

RÉSUMÉ

Although the tris(dibenzylideneacetone)diplatinum complex (Pt2dba3) is an important source of Pt(0) used in catalysis and materials science, its structure has not yet been fully elucidated. A thorough study of the three-dimensional structure of Pt2dba3 and its dynamic behavior in solution was carried out using NMR spectroscopy methods at a high field (600 MHz) and molecular modeling. The complex was shown to contain three dba ligands in the s-cis,s-trans, s-trans,s-cis, and s-trans,s-trans conformations, which are uniformly oriented around the Pt2 backbone. In solution, the Pt2dba3 and Pd2dba3 complexes undergo rapid dynamic rearrangements, as evidenced by the exchange between the signals of the olefin protons of various dba ligands in the EXSY NMR spectra. According to the experimental measurements, the activation energies of the rearrangements were estimated to be 19.9 ± 0.2 and 17.9 ± 0.2 kcal/mol for the platinum and palladium complexes, respectively. Three possible mechanisms for this chemical exchange process were considered within the framework of DFT calculations. According to the calculated data, M2dba3 complexes undergo fluxional isomerization involving successive rotations of the dihedral angles formed by the carbonyl group and the C═C bond. Dissociation of dba ligands does not occur within these processes.

6.
Angew Chem Int Ed Engl ; 63(27): e202317468, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38572820

RÉSUMÉ

The formation of transient hybrid nanoscale metal species from homogeneous molecular precatalysts has been demonstrated by in situ NMR studies of catalytic reactions involving transition metals with N-heterocyclic carbene ligands (M/NHC). These hybrid structures provide benefits of both molecular complexes and nanoparticles, enhancing the activity, selectivity, flexibility, and regulation of active species. However, they are challenging to identify experimentally due to the unsuitability of standard methods used for homogeneous or heterogeneous catalysis. Utilizing a sophisticated solid-state NMR technique, we provide evidence for the formation of NHC-ligated catalytically active Pd nanoparticles (PdNPs) from Pd/NHC complexes during catalysis. The coordination of NHCs via C(NHC)-Pd bonding to the metal surface was first confirmed by observing the Knight shift in the 13C NMR spectrum of the frozen reaction mixture. Computational modeling revealed that as little as few NHC ligands are sufficient for complete ligation of the surface of the formed PdNPs. Catalytic experiments combined with in situ NMR studies confirmed the significant effect of surface covalently bound NHC ligands on the catalytic properties of the PdNPs formed by decomposition of the Pd/NHC complexes. This observation shows the crucial influence of NHC ligands on the activity and stability of nanoparticulate catalytic systems.

7.
Chempluschem ; 89(8): e202400029, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38589286

RÉSUMÉ

Continuing our investigation of catalytic oxo/imido heterometathesis as novel water-free method for C=N bond construction, we report here the application of classical transition metal oxides dispersed on silica (MOx/SiO2, M=V, Mo, W) as cheap, robust and readily available alternative to the catalysts prepared via Surface Organometallic Chemistry (SOMC). The oxide materials demonstrated activity in heterometathetical imidation of ketones, WO3/SiO2 being the most efficient. We also describe a new well-defined supported W imido complex (≡SiO)W(=NMes)2(Me2Pyr) (Mes=2,4,6-Me3C6H2, Me2Pyr=2,5-dimethylpyrrolyl) and characterize it with SOMC protocols, which allowed us to identify the position of W on the oxo/imido heterometathesis activity scale (Mo

8.
Dalton Trans ; 53(11): 4976-4983, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38393646

RÉSUMÉ

We investigate Ti(NEt2)4 supported on silica dehydroxylated at 700 °C as an easily accessible pre-catalyst for oxo/imido heterometathesis reactions. Being activated with TolNH2, the supported Ti amide (SiO)Ti(NEt2)3 (1) demonstrates catalytic activity in the imidation of ketones with N-sulfinylamines comparable with the most active previously described well-defined imido catalyst (SiO)Ti(NtBu)(Me2Pyr)(py)2 (2) (Me2Pyr = 2,5-dimethylpyrrolyl), which implies the in situ formation of surface imido species in this system. The materials obtained via treatment of 1 with anilines (TolNH2 (1a) and p-MeOC6H415NH2 (1b)) were studied with IR, EA and 1H, 13C, 15N and 2D solid-state NMR, although the proposed imido intermediate has not been detected, pointing towards tris-amides (SiO)Ti(NHC6H4X)3 (X = Me, OMe) being the major surface species in the isolated materials 1a and 1b. The system 1/TolNH2 was tested in a range of imidation reactions and demonstrated excellent performance for express high-yielding preparation of ketimines, formamidines, lactone imidates and sulfurdiimines, making it a convenient alternative to the well-defined supported Ti imido catalysts.

9.
Org Lett ; 26(5): 1022-1027, 2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38284999

RÉSUMÉ

A three-component synthesis of substituted dimethyl dihydro-2H-pyran-3,3(4H)-dicarboxylates in up to 80% yields by the reaction of ß-styrylmalonates with aromatic or aliphatic aldehydes in the presence of ROAlCl2 prepared in advance either by exposure of EtAlCl2 with air access or by mixing equimolar amounts of AlCl3 with a primary or secondary alcohol has been developed. If EtAlCl2, itself, is used, dihydro-2H-pyran-3,3(4H)-diesters are not formed at all, while dimerization of styrylmalonates by (4 + 2)-annulation-type to give substituted tetrahydronaphthalenes is the main process. The possibility of using the CH-O-Al fragment of alkoxyaluminum dichlorides in cycloaddition reactions with α-CH-functionalization has been shown for the first time.

10.
Pharmaceutics ; 15(9)2023 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-37765151

RÉSUMÉ

Abiraterone acetate (AbirAc) is the most used steroidal therapeutic agent for treatment of prostate cancer. The mainly hydrophobic molecular surface of AbirAc results in its poor solubility and plays an important role for retention of abiraterone in the cavity of the receptor formed by peptide chains and heme fragments. In order to evaluate the hydrolytic stability of AbirAc, to modify its solubility by formation of new solid forms and to model bonding of this medication with the heme, a series of d-metal complexes with AbirAc was obtained. AbirAc remains stable in water, acetonitrile, tetrahydrofuran, and ethanol, and readily interacts with dications as a terminal ligand to create discrete complexes, including [FePC(AbirAc)2] and [ZnTPP(AbirAc)] (H2PC = phthalocyanine and H2TPP = 5,10,15,20-tetraphenylporphyrine) models for ligand-receptor bonding. In reactions with silver(I) nitrate, AbirAc acts as a bridge ligand. Energies of chemical bonding between AbirAc and these cations vary from 97 to 235 kJ mol-1 and exceed those between metal atoms and water molecules. This can be indicative of the ability of abiraterone to replace solvent molecules in the coordination sphere of biometals in living cells, although the model [ZnTPP] complex remains stable in CDCl3, CD2Cl2, and 1,1,2,2-tetrachloroethane-d2 solvents and decomposes in polar dimethylsulfoxide-d6 and methanol-d4 solvents, as follows from the 1H DOSY spectra. Dynamics of its behavior in 1,1,2,2-tetrachloroethane-d2 were studied by ROESY and NMR spectra.

11.
Molecules ; 28(8)2023 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-37110802

RÉSUMÉ

Bacterial cystathionine γ-lyase (bCSE) is the main producer of H2S in pathogenic bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, etc. The suppression of bCSE activity considerably enhances the sensitivity of bacteria to antibiotics. Convenient methods for the efficient synthesis of gram quantities of two selective indole-based bCSE inhibitors, namely (2-(6-bromo-1H-indol-1-yl)acetyl)glycine (NL1), 5-((6-bromo-1H-indol-1-yl)methyl)- 2-methylfuran-3-carboxylic acid (NL2), as well as a synthetic method for preparation 3-((6-(7-chlorobenzo[b]thiophen-2-yl)-1H-indol-1-yl)methyl)- 1H-pyrazole-5-carboxylic acid (NL3), have been developed. The syntheses are based on the use of 6-bromoindole as the main building block for all three inhibitors (NL1, NL2, and NL3), and the designed residues are assembled at the nitrogen atom of the 6-bromoindole core or by the substitution of the bromine atom in the case of NL3 using Pd-catalyzed cross-coupling. The developed and refined synthetic methods would be significant for the further biological screening of NL-series bCSE inhibitors and their derivatives.


Sujet(s)
Antibactériens , Cystathionine gamma-lyase , Antibactériens/composition chimique , Indoles/composition chimique , Bactéries
12.
Molecules ; 28(7)2023 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-37049908

RÉSUMÉ

Some of the most important transformations in organic chemistry are rearrangement reactions, which play a crucial role in increasing synthetic efficiency and molecular complexity. The development of synthetic strategies involving rearrangement reactions, which can accomplish synthetic goals in a very efficient manner, has been an evergreen topic in the synthetic chemistry community. Xanthenes, pyridin-2(1H)-ones, and 1,6-naphthyridines have a wide range of biological activities. In this work, we propose the thermal rearrangement of 7,9-dihalogen-substituted 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridines in DMSO. Previously unknown 5,7-dihalogenated 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridines and 10-(3,5-dihalogen-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridines were synthesized with excellent yields (90-99%). The investigation of the transformation using 1H-NMR monitoring made it possible to confirm the ANRORC mechanism. The structures of synthesized compounds were confirmed by 2D-NMR spectroscopy.

13.
Chem Asian J ; 18(12): e202300219, 2023 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-37115095

RÉSUMÉ

Novel boronyl borinic ester I was generated by quenching the B2 pin2 /sec BuLi-ate complex with trifluoroacetic acid anhydride (TFAA) via ring-opening in the 1,3,2-dioxaborolane moiety on ate-boron. Detailed NMR studies of the B2 pin2 /sec BuLi-ate complex in solution and in solid state allowed us to assume its oligomeric nature in solids with only ate-boron involved in the oligomerization process. The O-trifluoroacetyl pinacolate residue on borinic ester I initially formed on quenching with TFAA undergoes an unusual intramolecular transesterification with the carbonyl group of trifluoroacetyl forming othroester moiety in a few hours at r. t. to give boronyl borinic ester II. A solution of these reagents I/II was proved to be efficient for borylation of (2-fluoroallyl)pyridinium salts that are highly base sensitive.


Sujet(s)
Esters , Palladium , Esters/composition chimique , Palladium/composition chimique , Bore , Fluoro-acétates
14.
J Steroid Biochem Mol Biol ; 230: 106280, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36870373

RÉSUMÉ

Steroid derivatives modified with nitrogen containing heterocycles are known to inhibit activity of steroidogenic enzymes, decrease proliferation of cancer cells and attract attention as promising anticancer agents. Specifically, 2'-(3ß-hydroxyandrosta-5,16-dien-17-yl)-4',5'-dihydro-1',3'-oxazole 1a potently inhibited proliferation of prostate carcinoma cells. In this study we synthesized and investigated five new derivatives of 3ß-hydroxyandrosta-5,16-diene comprising 4'-methyl or 4'-phenyl substituted oxazolinyl cycle 1 (b-f). Docking of compounds 1 (a-f) to CYP17A1 active site revealed that the presence of substitutents at C4' atom in oxazoline cycle, as well as C4' atom configuration, significantly affect docking poses of compounds in the complexes with enzyme. Testing of compounds 1 (a-f) as CYP17A1 inhibitors revealed that the only compound 1a, comprising unsubstituted oxazolinyl moiety, demonstrated strong inhibitory activity, while other compounds 1 (b-f) were slightly active or non active. Compounds 1 (a-f) efficiently decreased growth and proliferation of prostate carcinoma LNCaP and PC-3 cells at 96 h incubation; the effect of compound 1a was the most powerful. Compound 1a efficiently stimulated apoptosis and caused PC-3 cells death, that was demonstrated by a direct comparison of pro-apoptotic effects of compound 1a and abiraterone.


Sujet(s)
Antinéoplasiques , Hyperplasie de la prostate , Tumeurs de la prostate , Mâle , Humains , Prostate/métabolisme , Oxazoles/pharmacologie , Oxazoles/composition chimique , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/anatomopathologie , Prolifération cellulaire , Lignée cellulaire tumorale , Relation structure-activité , Steroid 17-alpha-hydroxylase/métabolisme
15.
Bioorg Chem ; 131: 106315, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36528924

RÉSUMÉ

New applications of palladium-catalyzed Sonogashira-type cross-coupling reaction between C5-halogenated 2'-deoxycytidine-5'-monophosphate and novel cyanine dyes with a terminal alkyne group have been developed. The present methodology allows to synthesize of fluorescently labeled C5-nucleoside triphosphates with different acetylene linkers between the fluorophore and pyrimidine base in good to excellent yields under mild reaction conditions. Modified 2'-deoxycytidine-5'-triphosphates were shown to be good substrates for DNA polymerases and were incorporated into the DNA by polymerase chain reaction.


Sujet(s)
ADN , Désoxycytidine , Cytidine triphosphate , ADN/génétique , Cytidine
16.
Biochimie ; 204: 8-21, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36063975

RÉSUMÉ

G-quadruplexes (G4s) are gaining increasing attention as possible regulators of chromatin packaging, and robust approaches to their studies in pseudo-native context are much needed. Here, we designed a simple in vitro model of G4-prone genomic DNA and employed it to elucidate the impact of G4s and G4-stabilizing ligands on nucleosome occupancy. We obtained two 226-bp dsDNA constructs composed of the strong nucleosome positioning sequence and an internucleosomal DNA-imitating tail. The tail was G4-free in the control construct and harbored a "strong" (stable) G4 motif in the construct of interest. An additional "weak" (semi-stable) G4 motif was found within the canonical nucleosome positioning sequence. Both G4s were confirmed by optical methods and 1H NMR spectroscopy. Electrophoretic mobility assays showed that the weak G4 motif did not obstruct nucleosome assembly, while the strong G4 motif in the tail sequence diminished nucleosome yield. Atomic force microscopy data and molecular modeling confirmed that the strong G4 was maintained in the tail of the correctly assembled nucleosome structure. Using both in vitro and in silico models, we probed three known G4 ligands and detected nucleosome-disrupting effects of the least selective ligand. Our results are in line with the negative correlation between stable G4s and nucleosome density, support G4 tolerance between regularly positioned nucleosomes, and highlight the importance of considering chromatin context when targeting genomic G4s.


Sujet(s)
Chromatine , G-quadruplexes , Chromatine/génétique , Nucléosomes , Ligands , ADN/composition chimique
17.
Molecules ; 27(21)2022 Nov 03.
Article de Anglais | MEDLINE | ID: mdl-36364355

RÉSUMÉ

Heptose phosphates-unique linkers between endotoxic lipid A and O-antigen in the bacterial membrane-are pathogen-associated molecular patterns recognized by the receptors of the innate immune system. Understanding the mechanisms of immune system activation is important for the development of therapeutic agents to combat infectious diseases and overcome antibiotic resistance. However, in practice, it is difficult to obtain a substantial amount of heptose phosphates for biological studies due to the narrow scope of the reported synthetic procedures. We have optimized and developed an inexpensive and convenient synthesis for the first performed gram-scale production of 1-O-methyl d-glycero-α-d-gluco-heptoside 7-phosphate from readily available d-glucose. Scaling up to such amounts of the product, we have increased the efficiency of the synthesis and reduced the number of steps of the classical route through the direct phosphorylation of the O6,O7-unprotected heptose. The refined method could be of practical value for further biological screening of heptose phosphate derivatives.


Sujet(s)
Glucose , Phosphates , Heptose , Molécules contenant des motifs associés aux pathogènes , Lipopolysaccharides
18.
Molecules ; 27(21)2022 Nov 03.
Article de Anglais | MEDLINE | ID: mdl-36364369

RÉSUMÉ

The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.


Sujet(s)
Amides , Pyridines , Pyridines/composition chimique , Amides/composition chimique , Bétaïne , Alkylation
19.
Radiat Oncol J ; 40(3): 200-207, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-36200309

RÉSUMÉ

PURPOSE: To compare biochemical recurrence-free survival (BRFS) and toxicity outcomes of high dose rate brachytherapy (HDRB) and stereotactic body radiotherapy (SBRT) boost after elective nodal irradiation for high/very high-risk prostate cancer. MATERIALS AND METHODS: a retrospective analysis was performed in 149 male. In 98 patients, the boost to the prostate was delivered by HDRB as 2 fractions of 10 Gy (EQD2 for α/ß = 1.5; 66 Gy) or 1 fraction of 15 Gy (EQD2 for α/ß = 1.5; 71 Gy). In 51 male, SBRT was used for the boost delivery (3 fractions of 7 Gy; EQD2Gy for α/ß = 1.5; 51 Gy) because brachytherapy equipment was out of order. RESULTS: In 98 patients that received HDRB boost, 3- and 5-year BRFS were 74.6% and 66.8%. Late grade-II genitourinary toxicity was detected in 27, grade-III in 1 case. Grade-II (maximum) rectal toxicity was diagnosed in nine patients. For 51 male patients that received SBRT boost, 3- and 5-year BRFS was 76.5% and 67.7%. Late grade-II (maximum) genitourinary toxicity was detected in five cases, late grade-II rectal toxicity in four cases. Other three patients developed late grade-III-IV rectal toxicity that required diverting colostomy. SBRT boost was associated with higher maximum dose to 2 cm3 of anterior rectal wall (D2cm³rectum) compared to HDRB: 92% versus 55% of dose to prostate. Severe rectal toxicity was negligible at EQD2 D2cm³rectum <85 Gy and EQD2 D5cm³ rectum <75 Gy. CONCLUSION: Our results indicate similar 3- and 5-year BRFS in patients with high/very high-risk prostate cancer who received HDRB or SBRT boost, but SBRT boost is associated with higher rate of severe late rectal toxicity.

20.
Org Lett ; 24(36): 6582-6587, 2022 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-36070396

RÉSUMÉ

Counterintuitively, the low basicity of the NH2 group in hydrazides makes them preferred nucleophiles for the synthesis of the N-substituted azaozonides in acid-catalyzed three-component condensation with 1,5-diketones and H2O2. In the case of more basic N sources, e.g., hydrazine and primary amines, such condensation does not occur under these reaction conditions. The method can be applied to a wide range of hydrazides and affords the target bicyclic azaozonides in 27-86% yields.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE