Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nutrients ; 16(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38892623

RÉSUMÉ

INTRODUCTION: Type 1 Diabetes (T1D) presents self-management challenges, requiring an additional 180 daily decisions to regulate blood glucose (BG) levels. Despite the potential, T1D-focused applications have a 43% attrition rate. This work delves into the willingness of people living with T1D (PwT1D) to use technology. METHOD: An online questionnaire investigated the current practices for carbohydrate estimation, nutritional tracking, and attitudes towards technology engagement, along with hypothetical scenarios and preferences regarding technology use. RESULTS: Thirty-nine responses were collected from PwT1D (n = 33) and caregivers (n = 6). Nutrition reporting preferences varied, with 50% favoring 'type and scroll' while 30% preferred meal photographing. Concerning the timing of reporting, 33% reported before meals, 55% after, and 12% at a later time. Improved Time in Range (TIR) was a strong motivator for app use, with 78% expressing readiness to adjust insulin doses based on app suggestions for optimizing TIR. Meal descriptions varied; a single word was used in 42% of cases, 23% used a simple description (i.e., "Sunday dinner"), 30% included portion sizes, and 8% provided full recipes. CONCLUSION: PwT1D shows interest in using technology to reduce the diabetes burden when it leads to an improved TIR. For such technology to be ecologically valid, it needs to strike a balance between requiring minimal user input and providing significant data, such as meal tags, to ensure accurate blood glucose management without overwhelming users with reporting tasks.


Sujet(s)
Diabète de type 1 , Humains , Diabète de type 1/sang , Femelle , Mâle , Adulte , Enquêtes et questionnaires , Adulte d'âge moyen , Repas , Applications mobiles , Glycémie/métabolisme , Jeune adulte , État nutritionnel , Autosurveillance glycémique , Insuline , Hydrates de carbone alimentaires/administration et posologie
2.
Digit Health ; 9: 20552076231192011, 2023.
Article de Anglais | MEDLINE | ID: mdl-37545627

RÉSUMÉ

Background: Children with hypoglycaemia disorders, such as congenital hyperinsulinism (CHI), are at constant risk of hypoglycaemia (low blood sugars) with the attendant risk of brain injury. Current approaches to hypoglycaemia detection and prevention vary from fingerprick glucose testing to the provision of continuous glucose monitoring (CGM) to machine learning (ML) driven glucose forecasting. Recent trends for ML have had limited success in preventing free-living hypoglycaemia, due to a focus on increasingly accurate glucose forecasts and a failure to acknowledge the human in the loop and the essential step of changing behaviour. The wealth of evidence from the fields of behaviour change and persuasive technology (PT) allows for the creation of a theory-informed and technologically considered approach. Objectives: We aimed to create a PT that would overcome the identified barriers to hypoglycaemia prevention for those with CHI to focus on proactive prevention rather than commonly used reactive approaches. Methods: We used the behaviour change technique taxonomy and persuasive systems design models to create HYPO-CHEAT (HYpoglycaemia-Prevention-thrOugh-Cgm-HEatmap-Assisted-Technology): a novel approach that presents aggregated CGM data in simple visualisations. The resultant ease of data interpretation is intended to facilitate behaviour change and subsequently reduce hypoglycaemia. Results: HYPO-CHEAT was piloted in 10 patients with CHI over 12 weeks and successfully identified weekly patterns of hypoglycaemia. These patterns consistently correlated with identifiable behaviours and were translated into both a change in proximal fingerprick behaviour and ultimately, a significant reduction in aggregated hypoglycaemia from 7.1% to 5.4% with four out of five patients showing clinically meaningful reductions in hypoglycaemia. Conclusions: We have provided pilot data of a new approach to hypoglycaemia prevention that focuses on proactive prevention and behaviour change. This approach is personalised for individual patients with CHI and is a first step in changing our approach to hypoglycaemia prevention in this group.

3.
Front Endocrinol (Lausanne) ; 14: 1116864, 2023.
Article de Anglais | MEDLINE | ID: mdl-36755920

RÉSUMÉ

In 2023, childhood hypoglycaemia remains a major public health problem and significant risk factor for consequent adverse neurodevelopment. Irrespective of the underlying cause, key elements of clinical management include the detection, prediction and prevention of episodes of hypoglycaemia. These tasks are increasingly served by Continuous Glucose Monitoring (CGM) devices that measure subcutaneous glucose at near-continuous frequency. While the use of CGM in type 1 diabetes is well established, the evidence for widespread use in rare hypoglycaemia disorders is less than convincing. However, in the few years since our last review there have been multiple developments and increased user feedback, requiring a review of clinical application. Despite advances in device technology, point accuracy of CGM remains low for children with non-diabetes hypoglycaemia. Simple provision of CGM devices has not replicated the efficacy seen in those with diabetes and is yet to show benefit. Machine learning techniques for hypoglycaemia prevention have so far failed to demonstrate sufficient prediction accuracy for real world use even in those with diabetes. Furthermore, access to CGM globally is restricted by costs kept high by the commercially-driven speed of technical innovation. Nonetheless, the ability of CGM to digitally phenotype disease groups has led to a better understanding of natural history of disease, facilitated diagnoses and informed changes in clinical management. Large CGM datasets have prompted re-evaluation of hypoglycaemia incidence and facilitated improved trial design. Importantly, an individualised approach and focus on the behavioural determinants of hypoglycaemia has led to real world reduction in hypoglycaemia. In this state of the art review, we critically analyse the updated evidence for use of CGM in non-diabetic childhood hypoglycaemia disorders since 2020 and provide suggestions for qualified use.


Sujet(s)
Diabète de type 1 , Hypoglycémie , Humains , Glycémie/analyse , Autosurveillance glycémique/méthodes , Hypoglycémie/diagnostic , Hypoglycémie/prévention et contrôle , Diabète de type 1/complications , Diabète de type 1/traitement médicamenteux , Facteurs de risque
4.
Front Endocrinol (Lausanne) ; 13: 1016072, 2022.
Article de Anglais | MEDLINE | ID: mdl-36407313

RÉSUMÉ

Objective: Continuous Glucose Monitoring (CGM) is gaining in popularity for patients with paediatric hypoglycaemia disorders such as Congenital Hyperinsulinism (CHI), but no standard measures of accuracy or associated clinical risk are available. The small number of prior assessments of CGM accuracy in CHI have thus been incomplete. We aimed to develop a novel Hypoglycaemia Error Grid (HEG) for CGM assessment for those with CHI based on expert consensus opinion applied to a large paired (CGM/blood glucose) dataset. Design and methods: Paediatric endocrinology consultants regularly managing CHI in the two UK centres of excellence were asked to complete a questionnaire regarding glucose cutoffs and associated anticipated risks of CGM errors in a hypothetical model. Collated information was utilised to mathematically generate the HEG which was then approved by expert, consensus opinion. Ten patients with CHI underwent 12 weeks of monitoring with a Dexcom G6 CGM and self-monitored blood glucose (SMBG) with a Contour Next One glucometer to test application of the HEG and provide an assessment of accuracy for those with CHI. Results: CGM performance was suboptimal, based on 1441 paired values of CGM and SMBG showing Mean Absolute Relative Difference (MARD) of 19.3% and hypoglycaemia (glucose <3.5mmol/L (63mg/dL)) sensitivity of only 45%. The HEG provided clinical context to CGM errors with 15% classified as moderate risk by expert consensus when data was restricted to that of practical use. This provides a contrasting risk profile from existing diabetes error grids, reinforcing its utility in the clinical assessment of CGM accuracy in hypoglycaemia. Conclusions: The Hypoglycaemia Error Grid, based on UK expert consensus opinion has demonstrated inadequate accuracy of CGM to recommend as a standalone tool for routine clinical use. However, suboptimal accuracy of CGM relative to SMBG does not detract from alternative uses of CGM in this patient group, such as use as a digital phenotyping tool. The HEG is freely available on GitHub for use by other researchers to assess accuracy in their patient populations and validate these findings.


Sujet(s)
Hyperinsulinisme congénital , Diabète de type 1 , Humains , Enfant , Autosurveillance glycémique , Glycémie , Consensus , Glucose , Hyperinsulinisme congénital/diagnostic , Royaume-Uni/épidémiologie
5.
Digit Health ; 8: 20552076221129712, 2022.
Article de Anglais | MEDLINE | ID: mdl-36276186

RÉSUMÉ

Background: Children with congenital hyperinsulinism (CHI) are at constant risk of hypoglycaemia with the attendant risk of brain injury. Current hypoglycaemia prevention methods centre on the prediction of a continuous glucose variable using machine learning (ML) processing of continuous glucose monitoring (CGM). This approach ignores repetitive and predictable behavioural factors and is dependent upon ongoing CGM. Thus, there has been very limited success in reducing real-world hypoglycaemia with a ML approach in any condition. Objectives: We describe the development of HYPO-CHEAT (HYpoglycaemia-Prevention-thrOugh-CGM-HEatmap-Technology), which is designed to overcome these limitations by describing weekly hypoglycaemia risk. We tested HYPO-CHEAT in a real-world setting to evaluate change in hypoglycaemia. Methods: HYPO-CHEAT aggregates individual CGM data to identify weekly hypoglycaemia patterns. These are visualised via a hypoglycaemia heatmap along with actionable interpretations and targets. The algorithm is iterative and reacts to anticipated changing patterns of hypoglycaemia. HYPO-CHEAT was compared with Dexcom Clarity's pattern identification and Facebook Prophet's forecasting algorithm using data from 10 children with CHI using CGM for 12 weeks. HYPO-CHEAT's efficacy was assessed via change in time below range (TBR). Results: HYPO-CHEAT identified hypoglycaemia patterns in all patients. Dexcom Clarity identified no patterns. Predictions from Facebook Prophet were inconsistent and difficult to interpret. Importantly, the patterns identified by HYPO-CHEAT matched the lived experience of all patients, generating new and actionable understanding of the cause of hypos. This facilitated patients to significantly reduce their time in hypoglycaemia from 7.1% to 5.4% even when real-time CGM data was removed. Conclusions: HYPO-CHEAT's personalised hypoglycaemia heatmaps reduced total and targeted TBR even when CGM was reblinded. HYPO-CHEAT offers a highly effective and immediately available personalised approach to prevent hypoglycaemia and empower patients to self-care.

6.
Front Endocrinol (Lausanne) ; 13: 894559, 2022.
Article de Anglais | MEDLINE | ID: mdl-35928891

RÉSUMÉ

Background and Aims: In patients with congenital hyperinsulinism (CHI), recurrent hypoglycaemia can lead to longstanding neurological impairments. At present, glycaemic monitoring is with intermittent fingerprick blood glucose testing but this lacks utility to identify patterns and misses hypoglycaemic episodes between tests. Although continuous glucose monitoring (CGM) is well established in type 1 diabetes, its use has only been described in small studies in patients with CHI. In such studies, medical perspectives have been provided without fully considering the views of families using CGM. In this qualitative study, we aimed to explore families' experiences of using CGM in order to inform future clinical strategies for the management of CHI. Methods: Ten patients with CHI in a specialist centre used CGM for twelve weeks. All were invited to participate. Semi-structured interviews were conducted with nine families in whom patient ages ranged between two and seventeen years. Transcripts of the audio-recorded interviews were analysed using an inductive thematic analysis method. Results: Analysis revealed five core themes: CGM's function as an educational tool; behavioural changes; positive experiences; negative experiences; and design improvements. Close monitoring and retrospective analysis of glucose trends allowed for enhanced understanding of factors that influenced glucose levels at various times of the day. Parents noted more hypoglycaemic episodes than previously encountered through fingerprick tests; this new knowledge prompted modification of daily routines to prevent and improve the management of hypoglycaemia. CGM use was viewed favourably as offering parental reassurance, reduced fingerprick tests and predictive warnings. However, families also reported unfavourable aspects of alarms and questionable accuracy at low glucose levels. Adolescents were frustrated by the short proximity range for data transmission resulting in the need to always carry a separate receiver. Overall, families were positive about the use of CGM but expected application to be tailored to their child's medical condition. Conclusions: Patients and families with CHI using CGM noticed trends in glucose levels which motivated behavioural changes to reduce hypoglycaemia with advantages outweighing disadvantages. They expected CHI-specific modifications to enhance utility. Future design of CGM should incorporate end users' opinions and experiences for optimal glycaemic monitoring of CHI.


Sujet(s)
Autosurveillance glycémique , Hyperinsulinisme congénital , Adolescent , Glycémie/analyse , Autosurveillance glycémique/méthodes , Enfant , Enfant d'âge préscolaire , Hyperinsulinisme congénital/diagnostic , Humains , Hypoglycémiants , Études rétrospectives
7.
J Med Internet Res ; 23(10): e26957, 2021 10 29.
Article de Anglais | MEDLINE | ID: mdl-34435596

RÉSUMÉ

BACKGROUND: Hyperinsulinism (HI) due to excess and dysregulated insulin secretion is the most common cause of severe and recurrent hypoglycemia in childhood. High cerebral glucose use in the early hours results in a high risk of hypoglycemia in people with diabetes and carries a significant risk of brain injury. Prevention of hypoglycemia is the cornerstone of the management of HI, but the risk of hypoglycemia at night or the timing of hypoglycemia in children with HI has not been studied; thus, the digital phenotype remains incomplete and management suboptimal. OBJECTIVE: This study aims to quantify the timing of hypoglycemia in patients with HI to describe glycemic variability and to extend the digital phenotype. This will facilitate future work using computational modeling to enable behavior change and reduce exposure of patients with HI to injurious hypoglycemic events. METHODS: Patients underwent continuous glucose monitoring (CGM) with a Dexcom G4 or G6 CGM device as part of their clinical assessment for either HI (N=23) or idiopathic ketotic hypoglycemia (IKH; N=24). The CGM data were analyzed for temporal trends. Hypoglycemia was defined as glucose levels <3.5 mmol/L. RESULTS: A total of 449 hypoglycemic events totaling 15,610 minutes were captured over 237 days from 47 patients (29 males; mean age 70 months, SD 53). The mean length of hypoglycemic events was 35 minutes. There was a clear tendency for hypoglycemia in the early hours (3-7 AM), particularly for patients with HI older than 10 months who experienced hypoglycemia 7.6% (1480/19,370 minutes) of time in this period compared with 2.6% (2405/92,840 minutes) of time outside this period (P<.001). This tendency was less pronounced in patients with HI who were younger than 10 months, patients with a negative genetic test result, and patients with IKH. Despite real-time CGM, there were 42 hypoglycemic events from 13 separate patients with HI lasting >30 minutes. CONCLUSIONS: This is the first study to have taken the first step in extending the digital phenotype of HI by describing the glycemic trends and identifying the timing of hypoglycemia measured by CGM. We have identified the early hours as a time of high hypoglycemia risk for patients with HI and demonstrated that simple provision of CGM data to patients is not sufficient to eliminate hypoglycemia. Future work in HI should concentrate on the early hours as a period of high risk for hypoglycemia and must target personalized hypoglycemia predictions. Focus must move to the human-computer interaction as an aspect of the digital phenotype that is susceptible to change rather than simple mathematical modeling to produce small improvements in hypoglycemia prediction accuracy.


Sujet(s)
Diabète de type 1 , Hyperinsulinisme , Hypoglycémie , Glycémie , Autosurveillance glycémique , Enfant d'âge préscolaire , Analyse de regroupements , Analyse de données , Humains , Hypoglycémie/étiologie , Mâle , Phénotype , Études rétrospectives
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...