Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Physiol ; 13: 933397, 2022.
Article de Anglais | MEDLINE | ID: mdl-36200058

RÉSUMÉ

We propose a method to perform simultaneous measurements of percutaneous arterial oxygen saturation (SpO 2), tissue oxygen saturation (StO 2), pulse rate (PR), and respiratory rate (RR) in real-time, using a digital red-green-blue (RGB) camera. Concentrations of oxygenated hemoglobin (C HbO), deoxygenated hemoglobin (C HbR), total hemoglobin (C HbT), and StO 2 were estimated from videos of the human face using a method based on a tissue-like light transport model of the skin. The photoplethysmogram (PPG) signals are extracted from the temporal fluctuations in C HbO, C HbR, and C HbT using a finite impulse response (FIR) filter (low and high cut-off frequencies of 0.7 and 3 Hz, respectively). The PR is calculated from the PPG signal for C HbT. The ratio of pulse wave amplitude for C HbO and that for C HbR are associated with the reference value of SpO 2 measured by a commercially available pulse oximeter, which provides an empirical formula to estimate SpO 2 from videos. The respiration-dependent oscillation in C HbT was extracted from another FIR filter (low and high cut-off frequencies of 0.05 and 0.5 Hz, respectively) and used to calculate the RR. In vivo experiments with human volunteers while varying the fraction of inspired oxygen were performed to evaluate the comparability of the proposed method with commercially available devices. The Bland-Altman analysis showed that the mean bias for PR, RR, SpO 2, and StO 2 were -1.4 (bpm), -1.2(rpm), 0.5 (%), and -3.0 (%), respectively. The precisions for PR, RR, Sp O 2, and StO 2 were ±3.1 (bpm), ±3.5 (rpm), ±4.3 (%), and ±4.8 (%), respectively. The resulting precision and RMSE for StO 2 were pretty close to the clinical accuracy requirement. The accuracy of the RR is considered a little less accurate than clinical requirements. This is the first demonstration of a low-cost RGB camera-based method for contactless simultaneous measurements of the heart rate, percutaneous arterial oxygen saturation, and tissue oxygen saturation in real-time.

2.
NPJ Syst Biol Appl ; 4: 14, 2018.
Article de Anglais | MEDLINE | ID: mdl-29560274

RÉSUMÉ

Insulin plays a central role in glucose homeostasis, and impairment of insulin action causes glucose intolerance and leads to type 2 diabetes mellitus (T2DM). A decrease in the transient peak and sustained increase of circulating insulin following an infusion of glucose accompany T2DM pathogenesis. However, the mechanism underlying this abnormal temporal pattern of circulating insulin concentration remains unknown. Here we show that changes in opposite direction of hepatic and peripheral insulin clearance characterize this abnormal temporal pattern of circulating insulin concentration observed in T2DM. We developed a mathematical model using a hyperglycemic and hyperinsulinemic-euglycemic clamp in 111 subjects, including healthy normoglycemic and diabetic subjects. The hepatic and peripheral insulin clearance significantly increase and decrease, respectively, from healthy to borderline type and T2DM. The increased hepatic insulin clearance reduces the amplitude of circulating insulin concentration, whereas the decreased peripheral insulin clearance changes the temporal patterns of circulating insulin concentration from transient to sustained. These results provide further insight into the pathogenesis of T2DM, and thus may contribute to develop better treatment of this condition.

3.
Biophys J ; 112(4): 813-826, 2017 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-28256240

RÉSUMÉ

Why is the spine of a neuron so small that it can contain only small numbers of molecules and reactions inevitably become stochastic? We previously showed that, despite such noisy conditions, the spine exhibits robust, sensitive, and efficient features of information transfer using the probability of Ca2+ increase; however, the mechanisms are unknown. In this study, we show that the small volume effect enables robust, sensitive, and efficient information transfer in the spine volume, but not in the cell volume. In the spine volume, the intrinsic noise in reactions becomes larger than the extrinsic noise of input, resulting in robust information transfer despite input fluctuation. In the spine volume, stochasticity makes the Ca2+ increase occur with a lower intensity of input, causing higher sensitivity to lower intensity of input. The volume-dependency of information transfer increases its efficiency in the spine volume. Thus, we propose that the small-volume effect is the functional reason why the spine has to be so small.


Sujet(s)
Épines dendritiques/métabolisme , Modèles neurologiques , Calcium/métabolisme , Cellules de Purkinje/cytologie , Transduction du signal , Processus stochastiques
4.
PLoS One ; 10(12): e0143880, 2015.
Article de Anglais | MEDLINE | ID: mdl-26623647

RÉSUMÉ

Homeostatic control of blood glucose is regulated by a complex feedback loop between glucose and insulin, of which failure leads to diabetes mellitus. However, physiological and pathological nature of the feedback loop is not fully understood. We made a mathematical model of the feedback loop between glucose and insulin using time course of blood glucose and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in 113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the correlation of the parameters in the model with the progression of glucose intolerance and the conserved relationship between parameters. The model parameters of insulin sensitivity and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respectively, consistent with previous clinical observations. Importantly, insulin clearance, an insulin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of glucose intolerance in the mathematical model. Insulin clearance was positively correlated with a product of insulin sensitivity and secretion assessed by the clamp analysis or determined with the mathematical model. Insulin clearance was correlated negatively with postprandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law between the rate constant of insulin clearance and a product of rate constants of insulin sensitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM subjects. Insulin clearance shows a conserved relationship with the capacity of glucose disposal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts the progression of glucose intolerance.


Sujet(s)
Intolérance au glucose/physiopathologie , Glucose/métabolisme , Insuline/métabolisme , Adulte , Glycémie/métabolisme , Diabète de type 2/métabolisme , Diabète de type 2/physiopathologie , Évolution de la maladie , Jeûne/métabolisme , Jeûne/physiologie , Femelle , Technique du clamp glycémique/méthodes , Intolérance au glucose/métabolisme , Hyperglycémie provoquée/méthodes , Humains , Insulinorésistance/physiologie , Mâle , Adulte d'âge moyen , Période post-prandiale/physiologie
5.
PLoS One ; 9(6): e99040, 2014.
Article de Anglais | MEDLINE | ID: mdl-24932482

RÉSUMÉ

A dendritic spine is a very small structure (∼0.1 µm3) of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.


Sujet(s)
Calcium/métabolisme , Épines dendritiques/physiologie , Cellules de Purkinje/physiologie , Animaux , Synapses électriques/physiologie , Mâle , Souris , Modèles neurologiques , Neurones , Processus stochastiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE