Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Pineal Res ; 76(3): e12952, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38587234

RÉSUMÉ

Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.


Sujet(s)
Mélatonine , Récepteur de la mélatonine de type MT1 , Animaux , Humains , Récepteurs à la mélatonine , Récepteur de la mélatonine de type MT1/métabolisme , Récepteur de la mélatonine de type MT2/métabolisme , Mélatonine/métabolisme , Transduction du signal , Récepteurs couplés aux protéines G , Mammifères/métabolisme
2.
Nat Commun ; 15(1): 902, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38326347

RÉSUMÉ

GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.


Sujet(s)
Acides gras , Lysophospholipides , Humains , Cryomicroscopie électronique , Acides gras/métabolisme , Ligands , Lysophospholipides/métabolisme , Récepteurs aux lysophospholipides/agonistes , Récepteurs aux lysophospholipides/métabolisme
3.
Nature ; 618(7967): 1085-1093, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37286611

RÉSUMÉ

G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and ß-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than ß-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.


Sujet(s)
Sous-unités alpha Gs des protéines G , Imidazolidines , Récepteurs couplés aux protéines G , Humains , Régulation allostérique , bêta-Arrestines/métabolisme , Sites de fixation , Cryomicroscopie électronique , Développement de médicament , Sous-unités alpha Gs des protéines G/composition chimique , Sous-unités alpha Gs des protéines G/métabolisme , Sous-unités alpha Gs des protéines G/ultrastructure , Imidazolidines/composition chimique , Imidazolidines/pharmacologie , Ligands , Modèles moléculaires , Conformation des protéines/effets des médicaments et des substances chimiques , Récepteurs couplés aux protéines G/agonistes , Récepteurs couplés aux protéines G/composition chimique , Récepteurs couplés aux protéines G/classification , Récepteurs couplés aux protéines G/ultrastructure , Transduction du signal
4.
Nature ; 599(7883): 158-164, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34552243

RÉSUMÉ

Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart1,2. Native Kv4 tetrameric channels form macromolecular ternary complexes with two auxiliary ß-subunits-intracellular Kv channel-interacting proteins (KChIPs) and transmembrane dipeptidyl peptidase-related proteins (DPPs)-to evoke rapidly activating and inactivating A-type currents, which prevent the backpropagation of action potentials1-5. However, the modulatory mechanisms of Kv4 channel complexes remain largely unknown. Here we report cryo-electron microscopy structures of the Kv4.2-DPP6S-KChIP1 dodecamer complex, the Kv4.2-KChIP1 and Kv4.2-DPP6S octamer complexes, and Kv4.2 alone. The structure of the Kv4.2-KChIP1 complex reveals that the intracellular N terminus of Kv4.2 interacts with its C terminus that extends from the S6 gating helix of the neighbouring Kv4.2 subunit. KChIP1 captures both the N and the C terminus of Kv4.2. In consequence, KChIP1 would prevent N-type inactivation and stabilize the S6 conformation to modulate gating of the S6 helices within the tetramer. By contrast, unlike the reported auxiliary subunits of voltage-gated channel complexes, DPP6S interacts with the S1 and S2 helices of the Kv4.2 voltage-sensing domain, which suggests that DPP6S stabilizes the conformation of the S1-S2 helices. DPP6S may therefore accelerate the voltage-dependent movement of the S4 helices. KChIP1 and DPP6S do not directly interact with each other in the Kv4.2-KChIP1-DPP6S ternary complex. Thus, our data suggest that two distinct modes of modulation contribute in an additive manner to evoke A-type currents from the native Kv4 macromolecular complex.


Sujet(s)
Cryomicroscopie électronique , Ouverture et fermeture des portes des canaux ioniques , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme , Canaux potassiques Shal/composition chimique , Canaux potassiques Shal/métabolisme , Animaux , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/composition chimique , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/métabolisme , Femelle , Humains , Protéines KChIP/composition chimique , Protéines KChIP/métabolisme , Modèles moléculaires , Complexes multiprotéiques/génétique , Mutation , Protéines de tissu nerveux/composition chimique , Protéines de tissu nerveux/métabolisme , Ovocytes/métabolisme , Canaux potassiques/composition chimique , Canaux potassiques/métabolisme , Liaison aux protéines , Canaux potassiques Shal/génétique , Xenopus laevis
5.
Nat Struct Mol Biol ; 28(8): 694-701, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34354246

RÉSUMÉ

Melatonin receptors (MT1 and MT2) transduce inhibitory signaling by melatonin (N-acetyl-5-methoxytryptamine), which is associated with sleep induction and circadian rhythm modulation. Although recently reported crystal structures of ligand-bound MT1 and MT2 elucidated the basis of ligand entry and recognition, the ligand-induced MT1 rearrangement leading to Gi-coupling remains unclear. Here we report a cryo-EM structure of the human MT1-Gi signaling complex at 3.3 Å resolution, revealing melatonin-induced conformational changes propagated to the G-protein-coupling interface during activation. In contrast to other Gi-coupled receptors, MT1 exhibits a large outward movement of TM6, which is considered a specific feature of Gs-coupled receptors. Structural comparison of Gi and Gs complexes demonstrated conformational diversity of the C-terminal entry of the Gi protein, suggesting loose and variable interactions at the end of the α5 helix of Gi protein. These notions, together with our biochemical and computational analyses, highlight variable binding modes of Gαi and provide the basis for the selectivity of G-protein signaling.


Sujet(s)
Protéines G/métabolisme , Mélatonine/métabolisme , Récepteur de la mélatonine de type MT1/métabolisme , Cryomicroscopie électronique , Humains , Protéines membranaires/métabolisme , Structure quaternaire des protéines , Transduction du signal/physiologie , Relation structure-activité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE