Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
STAR Protoc ; 4(3): 102471, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37515762

RÉSUMÉ

Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).1,2,3.


Sujet(s)
Hydrogels , Organoïdes
2.
Bioconjug Chem ; 2023 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-36763006

RÉSUMÉ

Bio-orthogonal ligations that crosslink living cells with a substrate or other cells require high stability and rapid kinetics to maintain the nature of target cells. In this study, we report water-soluble cyclooctadiyne (WS-CODY) derivatives that undergo an ion-pair enhanced double-click reaction. The cationic side chain of WS-CODY accelerated the kinetics on the azide-modified cell surface due to proximity effect. Cationic WS-CODY was able to crosslink azide-modified, poorly adherent human lung cancer PC-9 cells not only to azide-grafted glass substrates but also to other cells within 5-30 min. We discovered that cell-substrate crosslinking induced the ITGA5 gene expression, whereas cell-cell crosslinking induced the CTNNA1 gene, according to the adhesion partner. Ion-pair-enhanced WS-CODY can be applied to a wide range of cells with established azide modifications and is expected to provide a powerful tool to regulate cell-substrate and cell-cell interactions.

3.
iScience ; 25(10): 105109, 2022 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-36317160

RÉSUMÉ

Spatially controlled self-organization represents a major challenge for organoid engineering. We have developed a mechanically patterned hydrogel for controlling self-condensation process to generate multi-cellular organoids. We first found that local stiffening with intrinsic mechanical gradient (IG > 0.008) induced single condensates of mesenchymal myoblasts, whereas the local softening led to stochastic aggregation. Besides, we revealed the cellular mechanism of two-step self-condensation: (1) cellular adhesion and migration at the mechanical boundary and (2) cell-cell contraction driven by intercellular actin-myosin networks. Finally, human pluripotent stem cell-derived hepatic progenitors with mesenchymal/endothelial cells (i.e., liver bud organoids) experienced collective migration toward locally stiffened regions generating condensates of the concave to spherical shapes. The underlying mechanism can be explained by force competition of cell-cell and cell-hydrogel biomechanical interactions between stiff and soft regions. These insights will facilitate the rational design of culture substrates inducing symmetry breaking in self-condensation of differentiating progeny toward future organoid engineering.

4.
Front Plant Sci ; 12: 682486, 2021.
Article de Anglais | MEDLINE | ID: mdl-34335652

RÉSUMÉ

Long-distance signaling between the shoot and roots of land plants plays a crucial role in ensuring their growth and development in a fluctuating environment, such as with soil nutrient deficiencies. MicroRNAs (miRNAs) are considered to contribute to such environmental adaptation via long-distance signaling since several miRNAs are transported between the shoot and roots in response to various soil nutrient changes. Leguminous plants adopt a shoot-mediated long-distance signaling system to maintain their mutualism with symbiotic nitrogen-fixing rhizobia by optimizing the number of symbiotic organs and root nodules. Recently, the involvement and importance of shoot-derived miR2111 in regulating nodule numbers have become evident. Shoot-derived miR2111 can systemically enhance rhizobial infection, and its accumulation is quickly suppressed in response to rhizobial inoculation and high-concentration nitrate application. In this mini-review, we briefly summarize the recent progress on the systemic optimization of nodulation in response to external environments, with a focus on systemic regulation via miR2111.

5.
Nat Commun ; 11(1): 5192, 2020 10 15.
Article de Anglais | MEDLINE | ID: mdl-33060582

RÉSUMÉ

Legumes utilize a shoot-mediated signaling system to maintain a mutualistic relationship with nitrogen-fixing bacteria in root nodules. In Lotus japonicus, shoot-to-root transfer of microRNA miR2111 that targets TOO MUCH LOVE, a nodulation suppressor in roots, has been proposed to explain the mechanism underlying nodulation control from shoots. However, the role of shoot-accumulating miR2111s for the systemic regulation of nodulation was not clearly shown. Here, we find L. japonicus has seven miR2111 loci, including those mapped through RNA-seq. MIR2111-5 expression in leaves is the highest among miR2111 loci and repressed after rhizobial infection depending on a shoot-acting HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor. MIR2111-5 knockout mutants show significantly decreased nodule numbers and miR2111 levels. Furthermore, grafting experiments using transformants demonstrate scions with altered miR2111 levels influence nodule numbers in rootstocks in a dose-dependent manner. Therefore, miR2111 accumulation in leaves through MIR2111-5 expression is required for HAR1-dependent systemic optimization of nodule number.


Sujet(s)
Loteae/métabolisme , microARN/métabolisme , Protéines végétales/métabolisme , Nodulation racinaire/physiologie , Pousses de plante/métabolisme , Nodules racinaires de plante/croissance et développement , Régulation de l'expression des gènes végétaux , Techniques de knock-out de gènes , Loteae/génétique , microARN/génétique , Feuilles de plante , Protéines végétales/génétique , Racines de plante/métabolisme , Pousses de plante/génétique , Rhizobium/métabolisme , Analyse de séquence , Transduction du signal/physiologie , Transcriptome
6.
Plant Cell Physiol ; 60(10): 2272-2281, 2019 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-31241164

RÉSUMÉ

Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with most land plants, mainly for the purpose of nutrient exchange. Many studies have revealed the regulation of processes in AMF, such as nutrient absorption from soil, metabolism and exchange with host plants, and the genes involved. However, the spatial regulation of the genes within the structures comprising each developmental stage is not well understood. Here, we demonstrate the structure-specific transcriptome of the model AMF species, Rhizophagus irregularis. We performed an ultra-low input RNA-seq analysis, SMART-seq2, comparing five extraradical structures, germ tubes, runner hyphae, branched absorbing structures (BAS), immature spores and mature spores. In addition, we reanalyzed the recently reported RNA-seq data comparing intraradical mycelium and arbuscule. Our analyses captured the distinct features of each structure and revealed the structure-specific expression patterns of genes related to nutrient transport and metabolism. Of note, the transcriptional profiles suggest distinct functions of BAS in nutrient absorption. These findings provide a comprehensive dataset to advance our understanding of the transcriptional dynamics of fungal nutrition in this symbiotic system.


Sujet(s)
Daucus carota/microbiologie , Régulation de l'expression des gènes fongiques , Glomeromycota/génétique , Mycorhizes/génétique , Nutriments/métabolisme , Transcriptome , Transport biologique , Analyse de profil d'expression de gènes , Banque de gènes , Glomeromycota/physiologie , Hyphae , Mycelium , Mycorhizes/physiologie , Racines de plante/microbiologie , Analyse de séquence d'ARN , Sol/composition chimique , Spores fongiques , Symbiose
7.
Commun Biol ; 1: 87, 2018.
Article de Anglais | MEDLINE | ID: mdl-30271968

RÉSUMÉ

Arbuscular mycorrhizal fungus (AMF) species are some of the most widespread symbionts of land plants. Our much improved reference genome assembly of a model AMF, Rhizophagus irregularis DAOM-181602 (total contigs = 210), facilitated a discovery of repetitive elements with unusual characteristics. R. irregularis has only ten or 11 copies of complete 45S rDNAs, whereas the general eukaryotic genome has tens to thousands of rDNA copies. R. irregularis rDNAs are highly heterogeneous and lack a tandem repeat structure. These findings provide evidence for the hypothesis that rDNA heterogeneity depends on the lack of tandem repeat structures. RNA-Seq analysis confirmed that all rDNA variants are actively transcribed. Observed rDNA/rRNA polymorphisms may modulate translation by using different ribosomes depending on biotic and abiotic interactions. The non-tandem repeat structure and intragenomic heterogeneity of AMF rDNA/rRNA may facilitate successful adaptation to various environmental conditions, increasing host compatibility of these symbiotic fungi.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...