Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Rep ; 14(1): 4559, 2024 02 24.
Article de Anglais | MEDLINE | ID: mdl-38402243

RÉSUMÉ

Simulating future land use changes can be an important tool to support decision-making, especially in areas that are experiencing rapid anthropogenic pressure, such as the Cerrado-Brazilian savanna. Here we used a spatially-explicit model to identify the main drivers of native vegetation loss in the Cerrado and then extrapolate this loss for 2050 and 2070. We also analyzed the role of property size in complex Brazilian environmental laws in determining different outcomes of these projections. Our results show that distance to rivers, roads, and cities, agricultural potential, permanent and annual crop agriculture, and cattle led to observed/historical loss of vegetation, while protected areas prevented such loss. Assuming full adoption of the current Forest Code, the Cerrado may lose 26.5 million ha (± 11.8 95% C.I.) of native vegetation by 2050 and 30.6 million ha (± 12.8 95% C.I.) by 2070, and this loss shall occur mainly within large properties. In terms of reconciling conservation and agricultural production, we recommend that public policies focus primarily on large farms, such as protecting 30% of the area of properties larger than 2500 ha, which would avoid a loss of more than 4.1 million hectares of native vegetation, corresponding to 13% of the predicted loss by 2070.


Sujet(s)
Biodiversité , Conservation des ressources naturelles , Animaux , Bovins , Brésil , Forêts , Agriculture , Écosystème
2.
Sci Total Environ ; 655: 1197-1206, 2019 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-30577112

RÉSUMÉ

We assess whether a Payments for Ecosystem Services (PES) programme met its objectives of reducing soil erosion and yielding water in an environmental protected area, the Guariroba River Basin, Midwestern Brazil. We measured rainfall and water discharge throughout 2012 and 2016. During the same period, soil and water conservation practices were performed in the basin, such as: building level terraces and riparian vegetation recovery. We separated streamflow into baseflow and direct runoff, then we evaluted the baseflow index that indicated that groundwater significantly contributes to total flow. Therefore, to investigate the effects on streamflow, we performed a trend analysis in the baseflow time series using the Mann-Kendall test. In addition, we analysed the efficiency of soil erosion regulation practices over time, considering the total payment and the trends found in the baseflow. Whereas precipitation records present a decreasing trend (1 mm month-1), baseflow tends to increase by 0.018 m3 s-1 in the same period. Our findings show that soil conservation practices performed in the basin increase baseflow and also provide a better resilience to endure extreme events such as drought based on an increase in forest areas and soil conservation practices such as level terrace.

3.
Sci Rep ; 7(1): 8130, 2017 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-28811512

RÉSUMÉ

The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha-1 h-1 year-1 for observed data (1980-2013) and 10,089 MJ mm ha-1 h-1 year-1 and 10,585 MJ mm ha-1 h-1 year-1 for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE